{"title":"Electron Cloud Density Modulation in Three-Dimensional Porphyrin-Based Covalent Organic Frameworks for Enhanced Photocatalytic CO2 Reduction","authors":"Dayang Cheng, Longyi Ding, Chengtao Gong, Liyan Zhang*, Lili Ma, Yongwu Peng* and Guozan Yuan*, ","doi":"10.1021/acsmaterialslett.5c0013910.1021/acsmaterialslett.5c00139","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs), with their tunable structures and defined active sites, hold promise for photocatalytic reduction of CO<sub>2</sub> reduction. Systematic modulation of linker electron cloud density represents a critical strategy for optimizing the catalytic performance of COF-based photocatalysts, yet this approach faces several challenges. In this work, we employed 8-connected porphyrin as a building block to synthesize three distinct three-dimensional (3D) COF materials through the adjustment of the length and functional groups of the biconnected units. The synthesized 3D COFs exhibited varying catalytic activities for photocatalytic CO<sub>2</sub> conversion. Notably, <b>COF-3-Co</b>, which incorporates the benzimidazole unit (BFBie), demonstrated the best CO production yield and selectivity. Combined experimental and theoretical investigations revealed that the high electron cloud density of the BFBie unit effectively facilitated electron transfer, thereby significantly enhancing the photocatalytic activity. The findings presented herein provide valuable insights into the rational design and synthesis of efficient COF-based photocatalysts for the reduction of CO<sub>2</sub>.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 4","pages":"1235–1241 1235–1241"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00139","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs), with their tunable structures and defined active sites, hold promise for photocatalytic reduction of CO2 reduction. Systematic modulation of linker electron cloud density represents a critical strategy for optimizing the catalytic performance of COF-based photocatalysts, yet this approach faces several challenges. In this work, we employed 8-connected porphyrin as a building block to synthesize three distinct three-dimensional (3D) COF materials through the adjustment of the length and functional groups of the biconnected units. The synthesized 3D COFs exhibited varying catalytic activities for photocatalytic CO2 conversion. Notably, COF-3-Co, which incorporates the benzimidazole unit (BFBie), demonstrated the best CO production yield and selectivity. Combined experimental and theoretical investigations revealed that the high electron cloud density of the BFBie unit effectively facilitated electron transfer, thereby significantly enhancing the photocatalytic activity. The findings presented herein provide valuable insights into the rational design and synthesis of efficient COF-based photocatalysts for the reduction of CO2.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.