Bernd Kärcher, Fabian Hoffmann, Adam B. Sokol, Blaž Gasparini, Milena Corcos, Eric Jensen, Rachel Atlas, Aurélien Podglajen, Hugh Morrison, Albert Hertzog, Riwal Plougonven, Kamal Kant Chandrakhar, Wojciech W. Grabowski
{"title":"Dissecting cirrus clouds: navigating effects of turbulence on homogeneous ice formation","authors":"Bernd Kärcher, Fabian Hoffmann, Adam B. Sokol, Blaž Gasparini, Milena Corcos, Eric Jensen, Rachel Atlas, Aurélien Podglajen, Hugh Morrison, Albert Hertzog, Riwal Plougonven, Kamal Kant Chandrakhar, Wojciech W. Grabowski","doi":"10.1038/s41612-025-01024-w","DOIUrl":null,"url":null,"abstract":"<p>Turbulent air motions determine the local environment in which cloud ice crystals form. Homogeneous freezing of aqueous solution droplets is the most fundamental pathway to nucleate ice crystals in cirrus. Lack of knowledge about the role of turbulence in cirrus ice formation limits our understanding of how uncertainties in small-scale cloud processes affect the climatological radiative effect of cirrus. Here we shed first light on how turbulent fluctuations in temperature and supersaturation interact with probabilistic homogeneous freezing. We show that spatial model resolution substantially below 1–10 m is needed to properly simulate homogeneous freezing events. Importantly, microscale turbulence generates large variability in nucleated ice crystal number concentrations. Previous research ascribed this variability to mesoscale dynamical forcing due to gravity waves alone. The turbulence-generated microphysical variability has macrophysical implications. The wide range of predicted cloud radiative heating anomalies in anvil cirrus due to turbulence-ice nucleation interactions, comparable to typical mean values, is potentially large enough to affect the response of tropical cirrus cloud systems to global warming. Our results have ramifications for the multiscale modeling of cirrus clouds and the interpretation of in situ measurements.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"183 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01024-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Turbulent air motions determine the local environment in which cloud ice crystals form. Homogeneous freezing of aqueous solution droplets is the most fundamental pathway to nucleate ice crystals in cirrus. Lack of knowledge about the role of turbulence in cirrus ice formation limits our understanding of how uncertainties in small-scale cloud processes affect the climatological radiative effect of cirrus. Here we shed first light on how turbulent fluctuations in temperature and supersaturation interact with probabilistic homogeneous freezing. We show that spatial model resolution substantially below 1–10 m is needed to properly simulate homogeneous freezing events. Importantly, microscale turbulence generates large variability in nucleated ice crystal number concentrations. Previous research ascribed this variability to mesoscale dynamical forcing due to gravity waves alone. The turbulence-generated microphysical variability has macrophysical implications. The wide range of predicted cloud radiative heating anomalies in anvil cirrus due to turbulence-ice nucleation interactions, comparable to typical mean values, is potentially large enough to affect the response of tropical cirrus cloud systems to global warming. Our results have ramifications for the multiscale modeling of cirrus clouds and the interpretation of in situ measurements.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.