Dissecting cirrus clouds: navigating effects of turbulence on homogeneous ice formation

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Bernd Kärcher, Fabian Hoffmann, Adam B. Sokol, Blaž Gasparini, Milena Corcos, Eric Jensen, Rachel Atlas, Aurélien Podglajen, Hugh Morrison, Albert Hertzog, Riwal Plougonven, Kamal Kant Chandrakhar, Wojciech W. Grabowski
{"title":"Dissecting cirrus clouds: navigating effects of turbulence on homogeneous ice formation","authors":"Bernd Kärcher, Fabian Hoffmann, Adam B. Sokol, Blaž Gasparini, Milena Corcos, Eric Jensen, Rachel Atlas, Aurélien Podglajen, Hugh Morrison, Albert Hertzog, Riwal Plougonven, Kamal Kant Chandrakhar, Wojciech W. Grabowski","doi":"10.1038/s41612-025-01024-w","DOIUrl":null,"url":null,"abstract":"<p>Turbulent air motions determine the local environment in which cloud ice crystals form. Homogeneous freezing of aqueous solution droplets is the most fundamental pathway to nucleate ice crystals in cirrus. Lack of knowledge about the role of turbulence in cirrus ice formation limits our understanding of how uncertainties in small-scale cloud processes affect the climatological radiative effect of cirrus. Here we shed first light on how turbulent fluctuations in temperature and supersaturation interact with probabilistic homogeneous freezing. We show that spatial model resolution substantially below 1–10 m is needed to properly simulate homogeneous freezing events. Importantly, microscale turbulence generates large variability in nucleated ice crystal number concentrations. Previous research ascribed this variability to mesoscale dynamical forcing due to gravity waves alone. The turbulence-generated microphysical variability has macrophysical implications. The wide range of predicted cloud radiative heating anomalies in anvil cirrus due to turbulence-ice nucleation interactions, comparable to typical mean values, is potentially large enough to affect the response of tropical cirrus cloud systems to global warming. Our results have ramifications for the multiscale modeling of cirrus clouds and the interpretation of in situ measurements.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"183 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01024-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Turbulent air motions determine the local environment in which cloud ice crystals form. Homogeneous freezing of aqueous solution droplets is the most fundamental pathway to nucleate ice crystals in cirrus. Lack of knowledge about the role of turbulence in cirrus ice formation limits our understanding of how uncertainties in small-scale cloud processes affect the climatological radiative effect of cirrus. Here we shed first light on how turbulent fluctuations in temperature and supersaturation interact with probabilistic homogeneous freezing. We show that spatial model resolution substantially below 1–10 m is needed to properly simulate homogeneous freezing events. Importantly, microscale turbulence generates large variability in nucleated ice crystal number concentrations. Previous research ascribed this variability to mesoscale dynamical forcing due to gravity waves alone. The turbulence-generated microphysical variability has macrophysical implications. The wide range of predicted cloud radiative heating anomalies in anvil cirrus due to turbulence-ice nucleation interactions, comparable to typical mean values, is potentially large enough to affect the response of tropical cirrus cloud systems to global warming. Our results have ramifications for the multiscale modeling of cirrus clouds and the interpretation of in situ measurements.

Abstract Image

剖析卷云:湍流对均匀冰形成的导航效应
湍流的空气运动决定了云冰晶形成的局部环境。水溶液液滴的均匀冻结是卷云形成冰晶的最基本途径。对湍流在卷云结冰过程中的作用缺乏了解,限制了我们对小尺度云过程的不确定性如何影响卷云的气候辐射效应的理解。在这里,我们首次阐明了温度和过饱和的湍流波动如何与概率均匀冻结相互作用。研究表明,要正确模拟均匀冻结事件,空间模型分辨率必须低于1-10 m。重要的是,微尺度湍流在有核冰晶数量浓度上产生了很大的变化。先前的研究将这种变化归因于仅由重力波引起的中尺度动力强迫。湍流产生的微物理变异具有宏观物理意义。由于湍流-冰核相互作用,砧状卷云中云辐射加热异常的预测范围与典型平均值相当,可能大到足以影响热带卷云系统对全球变暖的响应。我们的结果对卷云的多尺度建模和现场测量的解释有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信