Herbal extract fermented with inherent microbiota improves intestinal health by exerting antioxidant and anti-inflammatory effects in vitro and in vivo
IF 7 1区 农林科学Q1 Agricultural and Biological Sciences
Mara Heckmann, Nadiia Sadova, Georg Sandner, Cathrina Neuhauser, Bernhard Blank-Landeshammer, Bettina Schwarzinger, Alice König, Meizhen Liang, Michael Spitzer, Julian Weghuber, Verena Stadlbauer
{"title":"Herbal extract fermented with inherent microbiota improves intestinal health by exerting antioxidant and anti-inflammatory effects in vitro and in vivo","authors":"Mara Heckmann, Nadiia Sadova, Georg Sandner, Cathrina Neuhauser, Bernhard Blank-Landeshammer, Bettina Schwarzinger, Alice König, Meizhen Liang, Michael Spitzer, Julian Weghuber, Verena Stadlbauer","doi":"10.1186/s40104-025-01178-w","DOIUrl":null,"url":null,"abstract":"Maintaining intestinal health is crucial for the overall well-being and productivity of livestock, as it impacts nutrient absorption, immune function, and disease resistance. Oxidative stress and inflammation are key threats to intestinal integrity. This study explored the antioxidant, anti-inflammatory, and barrier-strengthening properties of a fermented plant macerate (FPM) derived from 45 local herbs, using a specifically developed fermentation process utilizing the plants’ inherent microbiota to enhance bioactivity and sustainability. In vitro experiments with IPEC-J2 cells showed that FPM significantly reduced intracellular reactive oxygen species (ROS) levels, improved barrier integrity, and enhanced cell migration under stress. Similar antioxidant effects were observed in THP-1 macrophages, where FPM reduced ROS production and modulated inflammatory responses by decreasing pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α), monokine induced by gamma interferon (MIG), interferon-inducible T cell alpha chemoattractant (I-TAC), macrophage inflammatory proteins (MIP)-1α and -1β] and increasing anti-inflammatory interleukin (IL)-10 levels. Mechanistic studies with HEK-Blue reporter cell lines revealed that FPM inhibited nuclear factor kappa B (NF-κB) activation via a toll-like receptor (TLR)4-independent pathway. In vivo, FPM significantly reduced ROS levels in Drosophila melanogaster and improved activity and LT50 values in Caenorhabditis elegans under oxidative stress, although it did not affect intestinal barrier integrity in these models. The findings indicate that FPM shows promising application as a functional feed supplement for improving intestinal health in livestock by mitigating oxidative stress and inflammation. Further studies, including livestock feeding trials, are recommended to validate these results.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"23 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01178-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining intestinal health is crucial for the overall well-being and productivity of livestock, as it impacts nutrient absorption, immune function, and disease resistance. Oxidative stress and inflammation are key threats to intestinal integrity. This study explored the antioxidant, anti-inflammatory, and barrier-strengthening properties of a fermented plant macerate (FPM) derived from 45 local herbs, using a specifically developed fermentation process utilizing the plants’ inherent microbiota to enhance bioactivity and sustainability. In vitro experiments with IPEC-J2 cells showed that FPM significantly reduced intracellular reactive oxygen species (ROS) levels, improved barrier integrity, and enhanced cell migration under stress. Similar antioxidant effects were observed in THP-1 macrophages, where FPM reduced ROS production and modulated inflammatory responses by decreasing pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α), monokine induced by gamma interferon (MIG), interferon-inducible T cell alpha chemoattractant (I-TAC), macrophage inflammatory proteins (MIP)-1α and -1β] and increasing anti-inflammatory interleukin (IL)-10 levels. Mechanistic studies with HEK-Blue reporter cell lines revealed that FPM inhibited nuclear factor kappa B (NF-κB) activation via a toll-like receptor (TLR)4-independent pathway. In vivo, FPM significantly reduced ROS levels in Drosophila melanogaster and improved activity and LT50 values in Caenorhabditis elegans under oxidative stress, although it did not affect intestinal barrier integrity in these models. The findings indicate that FPM shows promising application as a functional feed supplement for improving intestinal health in livestock by mitigating oxidative stress and inflammation. Further studies, including livestock feeding trials, are recommended to validate these results.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.