Wei Zhou, Yang Liu, Xuan Nie, Chen Zhu, Liming Xiong, Jing Zhou, Wei Huang
{"title":"Peptide-based inflammation-responsive implant coating sequentially regulates bone regeneration to enhance interfacial osseointegration","authors":"Wei Zhou, Yang Liu, Xuan Nie, Chen Zhu, Liming Xiong, Jing Zhou, Wei Huang","doi":"10.1038/s41467-025-58444-8","DOIUrl":null,"url":null,"abstract":"<p>Aseptic loosening is the primary cause of bone prosthesis failure, commonly attributed to inadequate osseointegration due to coatings misaligned with bone regeneration. Here, we modify the titanium surface with a mussel-inspired peptide to form a 3,4-dihydroxyphenylalanine (DOPA)-rich coating, then graft N<sub>3</sub>-K15-PVGLIG-K23 (P1) and N<sub>3</sub>-Y5-PVGLIG-K23 (P2), which are composed of anti-inflammatory (K23), angiogenic (K15), osteogenic (Y5), and inflammation-responsive (PVGLIG) sequences, onto the surface via click chemistry, forming the DOPA-P1@P2 coating. DOPA-P1@P2 promotes bone regeneration through sequential regulation. In the initial stage, the outermost K23 induces M2 macrophage polarization, establishing a pro-regenerative immune microenvironment. Subsequently, K15 and Y5, exposed by the release of K23, enhance angiogenesis and osteogenesis. In the final stage, DOPA-P1@P2 outperforms the TiO₂ control, showing a 161% increase in maximal push-out force, a 207% increase in bone volume fraction, and a 1409% increase in bone-to-implant contact. These findings show that DOPA-P1@P2 efficiently enhances interfacial osseointegration by sequentially regulating bone regeneration, providing viable insights into coating design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"73 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58444-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aseptic loosening is the primary cause of bone prosthesis failure, commonly attributed to inadequate osseointegration due to coatings misaligned with bone regeneration. Here, we modify the titanium surface with a mussel-inspired peptide to form a 3,4-dihydroxyphenylalanine (DOPA)-rich coating, then graft N3-K15-PVGLIG-K23 (P1) and N3-Y5-PVGLIG-K23 (P2), which are composed of anti-inflammatory (K23), angiogenic (K15), osteogenic (Y5), and inflammation-responsive (PVGLIG) sequences, onto the surface via click chemistry, forming the DOPA-P1@P2 coating. DOPA-P1@P2 promotes bone regeneration through sequential regulation. In the initial stage, the outermost K23 induces M2 macrophage polarization, establishing a pro-regenerative immune microenvironment. Subsequently, K15 and Y5, exposed by the release of K23, enhance angiogenesis and osteogenesis. In the final stage, DOPA-P1@P2 outperforms the TiO₂ control, showing a 161% increase in maximal push-out force, a 207% increase in bone volume fraction, and a 1409% increase in bone-to-implant contact. These findings show that DOPA-P1@P2 efficiently enhances interfacial osseointegration by sequentially regulating bone regeneration, providing viable insights into coating design.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.