{"title":"ESM-Ezy: a deep learning strategy for the mining of novel multicopper oxidases with superior properties","authors":"Hui Qian, Yuxuan Wang, Xibin Zhou, Tao Gu, Hui Wang, Hao Lyu, Zhikai Li, Xiuxu Li, Huan Zhou, Chengchen Guo, Fajie Yuan, Yajie Wang","doi":"10.1038/s41467-025-58521-y","DOIUrl":null,"url":null,"abstract":"<p>The UniProt database is a valuable resource for biocatalyst discovery, yet predicting enzymatic functions remains challenging, especially for low-similarity sequences. Identifying superior enzymes with enhanced catalytic properties is even harder. To overcome these challenges, we develop ESM-Ezy, an enzyme mining strategy leveraging the ESM-1b protein language model and similarity calculations in semantic space. Using ESM-Ezy, we identify novel multicopper oxidases (MCOs) with superior catalytic properties, achieving a 44% success rate in outperforming query enzymes (QEs) in at least one property, including catalytic efficiency, heat and organic solvent tolerance, and pH stability. Notably, 51% of the MCOs excel in environmental remediation applications, and some exhibited unique structural motifs and unique active centers enhancing their functions. Beyond MCOs, 40% of L-asparaginases identified show higher specific activity and catalytic efficiency than QEs. ESM-Ezy thus provides a promising approach for discovering high-performance biocatalysts with low sequence similarity, accelerating enzyme discovery for industrial applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58521-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The UniProt database is a valuable resource for biocatalyst discovery, yet predicting enzymatic functions remains challenging, especially for low-similarity sequences. Identifying superior enzymes with enhanced catalytic properties is even harder. To overcome these challenges, we develop ESM-Ezy, an enzyme mining strategy leveraging the ESM-1b protein language model and similarity calculations in semantic space. Using ESM-Ezy, we identify novel multicopper oxidases (MCOs) with superior catalytic properties, achieving a 44% success rate in outperforming query enzymes (QEs) in at least one property, including catalytic efficiency, heat and organic solvent tolerance, and pH stability. Notably, 51% of the MCOs excel in environmental remediation applications, and some exhibited unique structural motifs and unique active centers enhancing their functions. Beyond MCOs, 40% of L-asparaginases identified show higher specific activity and catalytic efficiency than QEs. ESM-Ezy thus provides a promising approach for discovering high-performance biocatalysts with low sequence similarity, accelerating enzyme discovery for industrial applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.