Taraneh Aziz-Safaie, Leon M Bischoff, Christoph Katemann, Johannes M Peeters, Dmitrij Kravchenko, Narine Mesropyan, Lucia D Beissel, Tatjana Dell, Oliver M Weber, Claus C Pieper, Daniel Kütting, Julian A Luetkens, Alexander Isaak
{"title":"Fast and Robust Single-Shot Cine Cardiac MRI Using Deep Learning Super-Resolution Reconstruction.","authors":"Taraneh Aziz-Safaie, Leon M Bischoff, Christoph Katemann, Johannes M Peeters, Dmitrij Kravchenko, Narine Mesropyan, Lucia D Beissel, Tatjana Dell, Oliver M Weber, Claus C Pieper, Daniel Kütting, Julian A Luetkens, Alexander Isaak","doi":"10.1097/RLI.0000000000001186","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study was to compare the diagnostic quality of deep learning (DL) reconstructed balanced steady-state free precession (bSSFP) single-shot (SSH) cine images with standard, multishot (also: segmented) bSSFP cine (standard cine) in cardiac MRI.</p><p><strong>Methods and materials: </strong>This prospective study was performed in a cohort of participants with clinical indication for cardiac MRI. SSH compressed-sensing bSSFP cine and standard multishot cine were acquired with breath-holding and electrocardiogram-gating in short-axis view at 1.5 Tesla. SSH cine images were reconstructed using an industry-developed DL super-resolution algorithm (DL-SSH cine). Two readers evaluated diagnostic quality (endocardial edge definition, blood pool to myocardium contrast and artifact burden) from 1 (nondiagnostic) to 5 (excellent). Functional left ventricular (LV) parameters were assessed in both sequences. Edge rise distance, apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio were calculated. Statistical analysis for the comparison of DL-SSH cine and standard cine included the Student's t-test, Wilcoxon signed-rank test, Bland-Altman analysis, and Pearson correlation.</p><p><strong>Results: </strong>Forty-five participants (mean age: 50 years ±18; 30 men) were included. Mean total scan time was 65% lower for DL-SSH cine compared to standard cine (92 ± 8 s vs 265 ± 33 s; P < 0.0001). DL-SSH cine showed high ratings for subjective image quality (eg, contrast: 5 [interquartile range {IQR}, 5-5] vs 5 [IQR, 5-5], P = 0.01; artifacts: 4.5 [IQR, 4-5] vs 5 [IQR, 4-5], P = 0.26), with superior values for sharpness parameters (endocardial edge definition: 5 [IQR, 5-5] vs 5 [IQR, 4-5], P < 0.0001; edge rise distance: 1.9 [IQR, 1.8-2.3] vs 2.5 [IQR, 2.3-2.6], P < 0.0001) compared to standard cine. No significant differences were found in the comparison of objective metrics between DL-SSH and standard cine (eg, aSNR: 49 [IQR, 38.5-70] vs 52 [IQR, 38-66.5], P = 0.74). Strong correlation was found between DL-SSH cine and standard cine for the assessment of functional LV parameters (eg, ejection fraction: r = 0.95). Subgroup analysis of participants with arrhythmia or unreliable breath-holding (n = 14/45, 31%) showed better image quality ratings for DL-SSH cine compared to standard cine (eg, artifacts: 4 [IQR, 4-5] vs 4 [IQR, 3-5], P = 0.04).</p><p><strong>Conclusions: </strong>DL reconstruction of SSH cine sequence in cardiac MRI enabled accelerated acquisition times and noninferior diagnostic quality compared to standard cine imaging, with even superior diagnostic quality in participants with arrhythmia or unreliable breath-holding.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001186","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of the study was to compare the diagnostic quality of deep learning (DL) reconstructed balanced steady-state free precession (bSSFP) single-shot (SSH) cine images with standard, multishot (also: segmented) bSSFP cine (standard cine) in cardiac MRI.
Methods and materials: This prospective study was performed in a cohort of participants with clinical indication for cardiac MRI. SSH compressed-sensing bSSFP cine and standard multishot cine were acquired with breath-holding and electrocardiogram-gating in short-axis view at 1.5 Tesla. SSH cine images were reconstructed using an industry-developed DL super-resolution algorithm (DL-SSH cine). Two readers evaluated diagnostic quality (endocardial edge definition, blood pool to myocardium contrast and artifact burden) from 1 (nondiagnostic) to 5 (excellent). Functional left ventricular (LV) parameters were assessed in both sequences. Edge rise distance, apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio were calculated. Statistical analysis for the comparison of DL-SSH cine and standard cine included the Student's t-test, Wilcoxon signed-rank test, Bland-Altman analysis, and Pearson correlation.
Results: Forty-five participants (mean age: 50 years ±18; 30 men) were included. Mean total scan time was 65% lower for DL-SSH cine compared to standard cine (92 ± 8 s vs 265 ± 33 s; P < 0.0001). DL-SSH cine showed high ratings for subjective image quality (eg, contrast: 5 [interquartile range {IQR}, 5-5] vs 5 [IQR, 5-5], P = 0.01; artifacts: 4.5 [IQR, 4-5] vs 5 [IQR, 4-5], P = 0.26), with superior values for sharpness parameters (endocardial edge definition: 5 [IQR, 5-5] vs 5 [IQR, 4-5], P < 0.0001; edge rise distance: 1.9 [IQR, 1.8-2.3] vs 2.5 [IQR, 2.3-2.6], P < 0.0001) compared to standard cine. No significant differences were found in the comparison of objective metrics between DL-SSH and standard cine (eg, aSNR: 49 [IQR, 38.5-70] vs 52 [IQR, 38-66.5], P = 0.74). Strong correlation was found between DL-SSH cine and standard cine for the assessment of functional LV parameters (eg, ejection fraction: r = 0.95). Subgroup analysis of participants with arrhythmia or unreliable breath-holding (n = 14/45, 31%) showed better image quality ratings for DL-SSH cine compared to standard cine (eg, artifacts: 4 [IQR, 4-5] vs 4 [IQR, 3-5], P = 0.04).
Conclusions: DL reconstruction of SSH cine sequence in cardiac MRI enabled accelerated acquisition times and noninferior diagnostic quality compared to standard cine imaging, with even superior diagnostic quality in participants with arrhythmia or unreliable breath-holding.
期刊介绍:
Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.