Discrepancies between Theory and Experiment in Determining the Ionization Energy of NF3.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Megan R Bentley, Peter R Franke, Kaila E Weflen, David H Bross, Branko Ruscic, John F Stanton
{"title":"Discrepancies between Theory and Experiment in Determining the Ionization Energy of NF<sub>3</sub>.","authors":"Megan R Bentley, Peter R Franke, Kaila E Weflen, David H Bross, Branko Ruscic, John F Stanton","doi":"10.1021/acs.jpca.5c00613","DOIUrl":null,"url":null,"abstract":"<p><p>High-accuracy <i>ab initio</i> thermochemical predictions for the ionization energy of NF<sub>3</sub>, the barrier height (to inversion) of NF<sub>3</sub><sup>+</sup>, and the dissociative ionization threshold of NF<sub>3</sub> to NF<sub>2</sub><sup>+</sup> + F are presented and incorporated into Active Thermochemical Tables. The adiabatic ionization energy of the first ionization band of NF<sub>3</sub>, calculated at 12.647 ± 0.010 eV, is at odds with previous experimental interpretations by nearly 0.36 eV due to unfavorable Franck-Condon factors associated with this transition. The barrier (to inversion) height is calculated to be about 0.6 eV lower in energy than the prior interpretation, which instigates a discussion of the supposed vibrational structure of the first ionization band of NF<sub>3</sub>. Updated assignments of the photoelectron spectrum are proposed, and the loss in vibrational spacing on the high-energy side of the experimental ionization band is discussed. Rudimentary anharmonic Franck-Condon simulations qualitatively reproduce the broad spectral features observed in experiment.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00613","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-accuracy ab initio thermochemical predictions for the ionization energy of NF3, the barrier height (to inversion) of NF3+, and the dissociative ionization threshold of NF3 to NF2+ + F are presented and incorporated into Active Thermochemical Tables. The adiabatic ionization energy of the first ionization band of NF3, calculated at 12.647 ± 0.010 eV, is at odds with previous experimental interpretations by nearly 0.36 eV due to unfavorable Franck-Condon factors associated with this transition. The barrier (to inversion) height is calculated to be about 0.6 eV lower in energy than the prior interpretation, which instigates a discussion of the supposed vibrational structure of the first ionization band of NF3. Updated assignments of the photoelectron spectrum are proposed, and the loss in vibrational spacing on the high-energy side of the experimental ionization band is discussed. Rudimentary anharmonic Franck-Condon simulations qualitatively reproduce the broad spectral features observed in experiment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信