Duygu S. Polat, Zihua Chen, Samüel A. M. Weima, Satoshi Aya, Danqing Liu
{"title":"An autonomous snapper featuring adaptive actuation and embodied intelligence","authors":"Duygu S. Polat, Zihua Chen, Samüel A. M. Weima, Satoshi Aya, Danqing Liu","doi":"10.1126/sciadv.adu4268","DOIUrl":null,"url":null,"abstract":"<div >Developing artificial systems with autonomous motion is essential for creating devices that emulate nature’s adaptive mechanisms. Here, we introduce a light-driven liquid crystalline network snapper that integrates both sensing and actuation capabilities, enabling adaptive responses to environmental conditions. Under constant light illumination, the snapper undergoes spontaneous snap-through transformation driven by the elastic instability embedded within the material. The snapper achieves out-of-equilibrium motion through continuous energy transfer with the environment, enabling it to sustain dynamic, reversible cycles of snapping without external control. We demonstrate the ability of the liquid crystalline network snapper to detect environmental changes—such as shifts in temperature, surface roughness, and color—demonstrating a form of embodied intelligence. This work offers a distinctive strategy for designing biomimetic devices that merge embodied intelligence with autonomous motion, opening pathways for advanced, adaptive systems for soft robotics.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 14","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adu4268","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adu4268","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing artificial systems with autonomous motion is essential for creating devices that emulate nature’s adaptive mechanisms. Here, we introduce a light-driven liquid crystalline network snapper that integrates both sensing and actuation capabilities, enabling adaptive responses to environmental conditions. Under constant light illumination, the snapper undergoes spontaneous snap-through transformation driven by the elastic instability embedded within the material. The snapper achieves out-of-equilibrium motion through continuous energy transfer with the environment, enabling it to sustain dynamic, reversible cycles of snapping without external control. We demonstrate the ability of the liquid crystalline network snapper to detect environmental changes—such as shifts in temperature, surface roughness, and color—demonstrating a form of embodied intelligence. This work offers a distinctive strategy for designing biomimetic devices that merge embodied intelligence with autonomous motion, opening pathways for advanced, adaptive systems for soft robotics.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.