Modeling to investigate the mechanical degradation of carbon fiber-reinforced polymer composites subjected to salt-fog and ultraviolet radiation synergistic environment

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Haoyuan Suo, Wei Yiheng, Wei Zhaohui, Hui Cheng, Bin Luo
{"title":"Modeling to investigate the mechanical degradation of carbon fiber-reinforced polymer composites subjected to salt-fog and ultraviolet radiation synergistic environment","authors":"Haoyuan Suo,&nbsp;Wei Yiheng,&nbsp;Wei Zhaohui,&nbsp;Hui Cheng,&nbsp;Bin Luo","doi":"10.1007/s10853-025-10804-x","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical degradation of carbon fiber-reinforced polymer composites (CFRP) under marine environment has become an increasing important concern due to its significance to reliable service. This paper aims to establish models to investigate the mechanical degradation of CFRP under marine environment, in which the evolution of component materials properties, initiation and growth of internal microcracks and delamination damage were considered. A representative volume element with randomly generated fibers was established to calculate the mechanical properties before and after environment aging. The microcracks induced by environment aging were described by a defect hypothesis, and a two-dimensional tensile model was developed to determine the numbers and size of the defects. Then the moisture absorption behavior and hygrothermal residual stress were investigated by three- and two-dimensional models. Finally, the evolution of interlayers properties was revealed by a specimen-sized interlaminar shear model according to the traction–separation cohesive law. The results show that the cracks inside the material can lead to nonlinear changes of mechanical properties. Moisture distribution in composite laminate is not affected by the ply orientation, while the hygrothermal stress is closely related to the layup sequence and significant stress concentration can be observed in the fiber–matrix interface. The evolution of interlaminar shear performance can be well explained by the degradation factors of interlaminar strength and fracture energy.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 13","pages":"5847 - 5868"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10804-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical degradation of carbon fiber-reinforced polymer composites (CFRP) under marine environment has become an increasing important concern due to its significance to reliable service. This paper aims to establish models to investigate the mechanical degradation of CFRP under marine environment, in which the evolution of component materials properties, initiation and growth of internal microcracks and delamination damage were considered. A representative volume element with randomly generated fibers was established to calculate the mechanical properties before and after environment aging. The microcracks induced by environment aging were described by a defect hypothesis, and a two-dimensional tensile model was developed to determine the numbers and size of the defects. Then the moisture absorption behavior and hygrothermal residual stress were investigated by three- and two-dimensional models. Finally, the evolution of interlayers properties was revealed by a specimen-sized interlaminar shear model according to the traction–separation cohesive law. The results show that the cracks inside the material can lead to nonlinear changes of mechanical properties. Moisture distribution in composite laminate is not affected by the ply orientation, while the hygrothermal stress is closely related to the layup sequence and significant stress concentration can be observed in the fiber–matrix interface. The evolution of interlaminar shear performance can be well explained by the degradation factors of interlaminar strength and fracture energy.

Graphical abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信