Water-based conductive ink containing graphene nanosheets and ultrafine carbon powder for high-performance flexible wearable heaters

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weiwei Dong, Yuchen Yang, Shenghao Jiang, Zihao Xu, Shigen Zhu, Yunfeng Bai, Yilan Luo
{"title":"Water-based conductive ink containing graphene nanosheets and ultrafine carbon powder for high-performance flexible wearable heaters","authors":"Weiwei Dong,&nbsp;Yuchen Yang,&nbsp;Shenghao Jiang,&nbsp;Zihao Xu,&nbsp;Shigen Zhu,&nbsp;Yunfeng Bai,&nbsp;Yilan Luo","doi":"10.1007/s10853-025-10784-y","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-based composite conductive material, possessing advantages such as facile processing, cost-effectiveness, and ultralightness, represents a burgeoning electrothermal material. However, developing water-based inks using carbon-based materials that satisfy the requisites of human health safety, low-voltage operability, and durability in the realm of flexible wearable heaters remains an arduous challenge. Here, stable water-based conductive inks, with graphene nanosheets (GNs) and ultrafine carbon powder (UC) as conductive fillers, are prepared by a simple ball milling method. The conductive inks exhibited rheological properties suitable for screen printing, with a print resolution of up to 0.4 mm and an adhesion level of grade 1. When graphene nanosheets accounted for 15% of the total conductive filler content, the printed patterns displayed a “sandwich” type conductive network structure formed by both plane contact and point contact between conductive fillers at the microscale, resulting in a sheet resistance as low as 14.16 Ω sq⁻<sup>1</sup>, which was 54.99% lower than that of pure ultrafine carbon-printed patterns. The electrothermal film prepared from these printed patterns demonstrated rapid response within 50 s under low-voltage drive ranging from 4 to 16 V and achieved an adjustable temperature range of 30–90 °C. Also, it maintained stable performance under cyclic heating–cooling and bending conditions for up to 1000 cycles. Wearable heating sleeves with excellent heat uniformity were fabricated to validate their tremendous potential in flexible wearable device applications.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"60 13","pages":"5882 - 5898"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-025-10784-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-based composite conductive material, possessing advantages such as facile processing, cost-effectiveness, and ultralightness, represents a burgeoning electrothermal material. However, developing water-based inks using carbon-based materials that satisfy the requisites of human health safety, low-voltage operability, and durability in the realm of flexible wearable heaters remains an arduous challenge. Here, stable water-based conductive inks, with graphene nanosheets (GNs) and ultrafine carbon powder (UC) as conductive fillers, are prepared by a simple ball milling method. The conductive inks exhibited rheological properties suitable for screen printing, with a print resolution of up to 0.4 mm and an adhesion level of grade 1. When graphene nanosheets accounted for 15% of the total conductive filler content, the printed patterns displayed a “sandwich” type conductive network structure formed by both plane contact and point contact between conductive fillers at the microscale, resulting in a sheet resistance as low as 14.16 Ω sq⁻1, which was 54.99% lower than that of pure ultrafine carbon-printed patterns. The electrothermal film prepared from these printed patterns demonstrated rapid response within 50 s under low-voltage drive ranging from 4 to 16 V and achieved an adjustable temperature range of 30–90 °C. Also, it maintained stable performance under cyclic heating–cooling and bending conditions for up to 1000 cycles. Wearable heating sleeves with excellent heat uniformity were fabricated to validate their tremendous potential in flexible wearable device applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信