Zengquan Tian , Xiaoyan Dong , Yan Sun , Qinghong Shi
{"title":"De novo design and discovery of broad-spectrum affinity peptide ligands for influenza A vaccines","authors":"Zengquan Tian , Xiaoyan Dong , Yan Sun , Qinghong Shi","doi":"10.1016/j.chroma.2025.465937","DOIUrl":null,"url":null,"abstract":"<div><div>Seasonal Influenza viruses, owing to their continued evolution and high level of contagion, present a significant threat to public health around world each year. Vaccination remains the most effective strategy for preventing complications of influenza virus infection, particularly for vulnerable populations such as elderly individuals, children, and individuals with underlying health conditions. In this study, we described the <em>de novo</em> design for the discovery of affinity ligands targeting the conserved receptor binding site (RBS) of the influenza virus hemagglutinin (HA). Based on three-round of molecular docking, three candidate peptides, pep1, pep3 and pep4, with top-rankings were identified. Molecular dynamic simulation and per-residue decomposition further revealed the different binding mechanisms of the three peptides with HA and the key residue's contribution to the binding. The result of microscale thermophoresis indicated that the three peptides had broad-spectrum affinity for various influenza A strains and, among them, pep1 had the highest binding affinity for HA (<em>K</em><sub>d</sub> = 0.58-0.73 μmol/L). By coupling pep1 onto Sepharose gels, the affinity gel was applied to the evaluation of the chromatographic performance in the purification of HA and influenza A vaccine from mimic egg- and mammalian-based feedstocks. A recovery of 68.3 %-72.2 % at the purity of 95.9 %-97.2 % was obtained in vaccine purification, demonstrating the excellent feature of the peptide ligand. This work provided new insight into the rational design of broad-spectrum affinity peptide targeting HA and the result has potential application in the production of influenza vaccines.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1750 ","pages":"Article 465937"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325002857","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Seasonal Influenza viruses, owing to their continued evolution and high level of contagion, present a significant threat to public health around world each year. Vaccination remains the most effective strategy for preventing complications of influenza virus infection, particularly for vulnerable populations such as elderly individuals, children, and individuals with underlying health conditions. In this study, we described the de novo design for the discovery of affinity ligands targeting the conserved receptor binding site (RBS) of the influenza virus hemagglutinin (HA). Based on three-round of molecular docking, three candidate peptides, pep1, pep3 and pep4, with top-rankings were identified. Molecular dynamic simulation and per-residue decomposition further revealed the different binding mechanisms of the three peptides with HA and the key residue's contribution to the binding. The result of microscale thermophoresis indicated that the three peptides had broad-spectrum affinity for various influenza A strains and, among them, pep1 had the highest binding affinity for HA (Kd = 0.58-0.73 μmol/L). By coupling pep1 onto Sepharose gels, the affinity gel was applied to the evaluation of the chromatographic performance in the purification of HA and influenza A vaccine from mimic egg- and mammalian-based feedstocks. A recovery of 68.3 %-72.2 % at the purity of 95.9 %-97.2 % was obtained in vaccine purification, demonstrating the excellent feature of the peptide ligand. This work provided new insight into the rational design of broad-spectrum affinity peptide targeting HA and the result has potential application in the production of influenza vaccines.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.