Leonardo Angelucci , Massimiliano Varani , François Pinet , Vincent Martin , Andrea Vertua , Giovanni Molari , Michele Mattetti
{"title":"The role of tyres and soil conditions in enhancing the efficiency of agricultural tractors","authors":"Leonardo Angelucci , Massimiliano Varani , François Pinet , Vincent Martin , Andrea Vertua , Giovanni Molari , Michele Mattetti","doi":"10.1016/j.still.2025.106570","DOIUrl":null,"url":null,"abstract":"<div><div>Maximizing agricultural tractor energy efficiency is crucial for sustainable farming. Tractors are one of the most popular machines in use in agriculture, and much of their use is dedicated to drawbar operations. Under these conditions, only up to 70 % of engine power is transferred to the soil, and this may even drop to 50 % on soils with poor mechanical properties. Recently, tyres which meet very high flexion standards have hit the market and to date, no study has performed a thorough full-vehicle traction analysis of vehicles equipped with such standards. This paper investigated the influence of tyres on vehicle performance and efficiency. Moreover, a cost analysis of the new tyre technology was carried out to assess the duration of use necessary for farmers to recoup the financial investment this new tyre technology requires. The analysis comprised steady-state drawbar tests on two soil types using a tractor rated at 230 kW and equipped with wheel force transducers. Key performance indicators were calculated from the collected data. Results showed superior traction on softer soil, where the mean vehicle traction ratio was 6.4 % higher than on firmer soil, highlighting tyre set performance differences. However, traction efficiency was 17.5 % greater on firmer soil. Very high flexion tyres resulted in improved indicators in both soils and despite the greater cost of tyres using the new standard, farmers may obtain economic benefits even within a year if such tyres are mostly used in field operations and on soft soils.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"251 ","pages":"Article 106570"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198725001242","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Maximizing agricultural tractor energy efficiency is crucial for sustainable farming. Tractors are one of the most popular machines in use in agriculture, and much of their use is dedicated to drawbar operations. Under these conditions, only up to 70 % of engine power is transferred to the soil, and this may even drop to 50 % on soils with poor mechanical properties. Recently, tyres which meet very high flexion standards have hit the market and to date, no study has performed a thorough full-vehicle traction analysis of vehicles equipped with such standards. This paper investigated the influence of tyres on vehicle performance and efficiency. Moreover, a cost analysis of the new tyre technology was carried out to assess the duration of use necessary for farmers to recoup the financial investment this new tyre technology requires. The analysis comprised steady-state drawbar tests on two soil types using a tractor rated at 230 kW and equipped with wheel force transducers. Key performance indicators were calculated from the collected data. Results showed superior traction on softer soil, where the mean vehicle traction ratio was 6.4 % higher than on firmer soil, highlighting tyre set performance differences. However, traction efficiency was 17.5 % greater on firmer soil. Very high flexion tyres resulted in improved indicators in both soils and despite the greater cost of tyres using the new standard, farmers may obtain economic benefits even within a year if such tyres are mostly used in field operations and on soft soils.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.