Yiwei Xu , Licheng Wang , Ruilin Wang , Weiqi Jiang , Longfei Du , Haibo Huang , Liwu Zhang , Yan Ding
{"title":"Fresh tire wear particles from moving vehicles: Dispersion dynamics, exposure, and prevention strategy","authors":"Yiwei Xu , Licheng Wang , Ruilin Wang , Weiqi Jiang , Longfei Du , Haibo Huang , Liwu Zhang , Yan Ding","doi":"10.1016/j.emcon.2025.100503","DOIUrl":null,"url":null,"abstract":"<div><div>Tire Wear Particles (TWPs) have emerged as a significant source of non-exhaust emissions, posing potential exposure risks due to increased vehicle ownership and the advent of new energy vehicles. However, the dispersion and flow dynamics of fresh TWPs remain largely unexplored. Here, we used a finite element aerodynamic simulation model to investigate the distribution of fresh TWPs from a moving vehicle and to assess human respiratory exposure near the vehicle. In addition, actual on-road particle level measurements were performed to qualitatively validate the results obtained from our model while developing a laboratory-scale emission reduction solution. Conservative data show that fresh TWPs (of 0.1–10 μm diameter) disperse up to 3.2 m wide and 2.2 m high, with minimal influence of particle size. At 1–2 m from the side of the vehicle driven at 60 km/h, the maximum concentration was found at a height of 0.8 m, reaching 5.0 μg/m3, demonstrating a significant exposure of children and adolescents. The emission reduction solution designed to mitigate the exposure risk (i.e., a collection channel mounted near the wheel cover) was shown to effectively reduce fresh TWP emissions, achieving a capture rate of >40 % at high speeds. Overall, the results obtained underscore the potential health issues associated with TWPs in urban areas, but also the ability to reduce exposure, provided that appropriate mitigation strategies are adopted.</div></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"11 3","pages":"Article 100503"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240566502500037X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Tire Wear Particles (TWPs) have emerged as a significant source of non-exhaust emissions, posing potential exposure risks due to increased vehicle ownership and the advent of new energy vehicles. However, the dispersion and flow dynamics of fresh TWPs remain largely unexplored. Here, we used a finite element aerodynamic simulation model to investigate the distribution of fresh TWPs from a moving vehicle and to assess human respiratory exposure near the vehicle. In addition, actual on-road particle level measurements were performed to qualitatively validate the results obtained from our model while developing a laboratory-scale emission reduction solution. Conservative data show that fresh TWPs (of 0.1–10 μm diameter) disperse up to 3.2 m wide and 2.2 m high, with minimal influence of particle size. At 1–2 m from the side of the vehicle driven at 60 km/h, the maximum concentration was found at a height of 0.8 m, reaching 5.0 μg/m3, demonstrating a significant exposure of children and adolescents. The emission reduction solution designed to mitigate the exposure risk (i.e., a collection channel mounted near the wheel cover) was shown to effectively reduce fresh TWP emissions, achieving a capture rate of >40 % at high speeds. Overall, the results obtained underscore the potential health issues associated with TWPs in urban areas, but also the ability to reduce exposure, provided that appropriate mitigation strategies are adopted.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.