Recent Advancements in CSP: Evaluating High-Temperature Heat Transfer Fluids, Corrosion Prevention, and Alloy Selection for Enhanced Energy Density

Mohd Naqueeb Shaad Jagirdar , Satya Sekhar Bhogilla , Ashmore Mawire , Hakeem Niyas
{"title":"Recent Advancements in CSP: Evaluating High-Temperature Heat Transfer Fluids, Corrosion Prevention, and Alloy Selection for Enhanced Energy Density","authors":"Mohd Naqueeb Shaad Jagirdar ,&nbsp;Satya Sekhar Bhogilla ,&nbsp;Ashmore Mawire ,&nbsp;Hakeem Niyas","doi":"10.1016/j.solcom.2025.100118","DOIUrl":null,"url":null,"abstract":"<div><div>Remarkable progress has been made in harnessing solar energy for electricity generation through Concentrated Solar Power (CSP) plants, which now exceed 6 GW in global installed capacity. The utilization of high-temperature heat transfer fluids (HTFs) has significantly improved system efficiencies; for instance, nitrate-based molten salts commonly operate at 300–565 °C, while newer chloride and carbonate salts can reach 700-800 °C enabling advanced supercritical CO₂ cycles with potential thermal-to-electric efficiencies of up to 50%. However, salts often cost $0.2-2.5 per kg and require carefully selected corrosion-resistant alloys. Meanwhile, liquid metals such as lead-bismuth can handle temperatures above 800 °C, offering high volumetric energy densities (often &gt;20,000 MJ/m³) and strong heat-transfer properties. Yet, they demand rigorous corrosion mitigation and elevated capital expenditures. This paper provides an in-depth review of HTF selection, corrosion prevention strategies, material costs, and energy density aspects in CSP. It further examines the feasibility of liquid metals relative to molten salts, covering suitable alloy materials for storage. By highlighting practical performance data and cost considerations, this review offers key insights into advancements and challenges of CSP technology ultimately proposing pathways toward more efficient, high-temperature solar energy generation.</div></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"14 ","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Compass","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294002500013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remarkable progress has been made in harnessing solar energy for electricity generation through Concentrated Solar Power (CSP) plants, which now exceed 6 GW in global installed capacity. The utilization of high-temperature heat transfer fluids (HTFs) has significantly improved system efficiencies; for instance, nitrate-based molten salts commonly operate at 300–565 °C, while newer chloride and carbonate salts can reach 700-800 °C enabling advanced supercritical CO₂ cycles with potential thermal-to-electric efficiencies of up to 50%. However, salts often cost $0.2-2.5 per kg and require carefully selected corrosion-resistant alloys. Meanwhile, liquid metals such as lead-bismuth can handle temperatures above 800 °C, offering high volumetric energy densities (often >20,000 MJ/m³) and strong heat-transfer properties. Yet, they demand rigorous corrosion mitigation and elevated capital expenditures. This paper provides an in-depth review of HTF selection, corrosion prevention strategies, material costs, and energy density aspects in CSP. It further examines the feasibility of liquid metals relative to molten salts, covering suitable alloy materials for storage. By highlighting practical performance data and cost considerations, this review offers key insights into advancements and challenges of CSP technology ultimately proposing pathways toward more efficient, high-temperature solar energy generation.
CSP 的最新进展:评估高温导热液体、防腐蚀和合金选择以提高能量密度
通过聚光太阳能发电站(CSP)利用太阳能发电已取得显著进展,目前全球装机容量已超过 6 GW。高温导热液体(HTFs)的使用大大提高了系统效率;例如,硝酸盐基熔盐通常在 300-565 °C 下运行,而较新的氯酸盐和碳酸盐可达到 700-800 °C,从而实现先进的超临界 CO₂循环,潜在热电效率可达 50%。然而,盐类的成本通常为每公斤 0.2-2.5 美元,并且需要精心挑选的耐腐蚀合金。与此同时,铅铋等液态金属可以承受 800 °C 以上的温度,具有较高的体积能量密度(通常为 20,000 MJ/m³)和较强的传热性能。然而,它们需要严格的腐蚀缓解措施和较高的资本支出。本文深入探讨了 CSP 中 HTF 的选择、防腐蚀策略、材料成本和能量密度方面的问题。它进一步探讨了液态金属相对于熔盐的可行性,并涵盖了适合用于存储的合金材料。通过强调实际性能数据和成本考虑因素,本综述为 CSP 技术的进步和挑战提供了重要见解,最终提出了实现更高效、更高温太阳能发电的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信