Tailoring solvation sheath and desolvation processes of weakly solvated Zn2+ through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries
Peng Cai , Mengjun Li , Xin He , Xianbo Zhou , Zhenyu Lei , Haomiao Li , Min Zhou , Wei Wang , Kangli Wang , Kai Jiang
{"title":"Tailoring solvation sheath and desolvation processes of weakly solvated Zn2+ through heterointerfaces built-in electric field effects for ultra-stable aqueous zinc batteries","authors":"Peng Cai , Mengjun Li , Xin He , Xianbo Zhou , Zhenyu Lei , Haomiao Li , Min Zhou , Wei Wang , Kangli Wang , Kai Jiang","doi":"10.1016/j.apmate.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces, and unstable H<sub>2</sub>O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction (HER), further accelerating interfaces decay. Herein, we propose for the first time a novel strategy to enhance the interfacial stabilities by in-situ dynamic reconstruction of weakly solvated Zn<sup>2+</sup> during the desolvation processes at heterointerfaces. Theoretical calculations indicate that, due to built-in electric field effects (BEFs), the plating/stripping mechanism shifts from [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> to [Zn(H<sub>2</sub>O)<sub>5</sub>(SO<sub>4</sub>)<sup>2-</sup>]<sup>2+</sup> without additional electrolyte additives, reducing the solvation ability of H<sub>2</sub>O, enhancing the competitive coordination of SO<sub>4</sub><sup>2−</sup>, essentially eliminating the undesirable side effects of anodes. Hence, symmetric cells can operate stably for 3000 h (51.7-times increase in cycle life), and the full cells can operate stably for 5000 cycles (51.5-times increase in cycle life). This study provides valuable insights into the critical design of weakly solvated Zn<sup>2+</sup> and desolvation processes at heterointerfaces.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 3","pages":"Article 100282"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solvated zinc ions are prone to undergo desolvation at the electrode/electrolyte interfaces, and unstable H2O molecules within the solvated sheaths tend to trigger hydrogen evolution reaction (HER), further accelerating interfaces decay. Herein, we propose for the first time a novel strategy to enhance the interfacial stabilities by in-situ dynamic reconstruction of weakly solvated Zn2+ during the desolvation processes at heterointerfaces. Theoretical calculations indicate that, due to built-in electric field effects (BEFs), the plating/stripping mechanism shifts from [Zn(H2O)6]2+ to [Zn(H2O)5(SO4)2-]2+ without additional electrolyte additives, reducing the solvation ability of H2O, enhancing the competitive coordination of SO42−, essentially eliminating the undesirable side effects of anodes. Hence, symmetric cells can operate stably for 3000 h (51.7-times increase in cycle life), and the full cells can operate stably for 5000 cycles (51.5-times increase in cycle life). This study provides valuable insights into the critical design of weakly solvated Zn2+ and desolvation processes at heterointerfaces.