Rahele Barjeste Vaezi , Michael R. Martin , Farnaz Hosseinpour
{"title":"Impacts of wildfire smoke aerosols on radiation, clouds, precipitation, climate, and air quality","authors":"Rahele Barjeste Vaezi , Michael R. Martin , Farnaz Hosseinpour","doi":"10.1016/j.aeaoa.2025.100322","DOIUrl":null,"url":null,"abstract":"<div><div>Wildfires have become increasingly prevalent, impacting ecosystems, climate, and human health on a global scale. This review aims to present a comprehensive analysis of current knowledge on the environmental factors and conditions driving wildfires, the characteristics and transport of smoke emissions, along the broader impacts of wildfire smoke on the weather and climate. These impacts include changes in atmospheric radiation, cloud formation, atmospheric circulation, precipitation patterns, and air quality, as well as their effects on land cover, safety, and public health. Wildfire emissions include various pollutants such as particulate matter that alter the Earth's energy balance, reduce air quality, and impact cloud microphysics. Key interactions, such as the direct and indirect effects of smoke aerosols, affect cloud cover and lifetime, precipitation, atmospheric stability, and ultimately induce changes in weather and climate dynamics. Moreover, smoke transport extends the effects of wildfires thousands of kilometers beyond their sources, which reduces agricultural productivity, deteriorates human health, and threatens the environment. Advances in satellite retrievals and modeling techniques have improved the ability to monitor, analyze, and predict these complex interactions. Moreover, this review highlights the critical need for advancing research to more precisely quantify and project multi-scale trends in wildfire smoke and its far-reaching impact on public health, safety, infrastructure, and ecosystems. Developing more robust adaptation strategies and resilience measures is essential to effectively mitigate these complex, adverse effects on communities and the environment.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"26 ","pages":"Article 100322"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162125000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfires have become increasingly prevalent, impacting ecosystems, climate, and human health on a global scale. This review aims to present a comprehensive analysis of current knowledge on the environmental factors and conditions driving wildfires, the characteristics and transport of smoke emissions, along the broader impacts of wildfire smoke on the weather and climate. These impacts include changes in atmospheric radiation, cloud formation, atmospheric circulation, precipitation patterns, and air quality, as well as their effects on land cover, safety, and public health. Wildfire emissions include various pollutants such as particulate matter that alter the Earth's energy balance, reduce air quality, and impact cloud microphysics. Key interactions, such as the direct and indirect effects of smoke aerosols, affect cloud cover and lifetime, precipitation, atmospheric stability, and ultimately induce changes in weather and climate dynamics. Moreover, smoke transport extends the effects of wildfires thousands of kilometers beyond their sources, which reduces agricultural productivity, deteriorates human health, and threatens the environment. Advances in satellite retrievals and modeling techniques have improved the ability to monitor, analyze, and predict these complex interactions. Moreover, this review highlights the critical need for advancing research to more precisely quantify and project multi-scale trends in wildfire smoke and its far-reaching impact on public health, safety, infrastructure, and ecosystems. Developing more robust adaptation strategies and resilience measures is essential to effectively mitigate these complex, adverse effects on communities and the environment.