{"title":"From lab to market: Economic viability of modern hydrogen evolution reaction catalysts","authors":"Margarita Ryabicheva , Yaroslav Zhigalenok , Saken Abdimomyn , Mazhyn Skakov , Arman Miniyazov , Gainiya Zhanbolatova , Nuriya Mukhamedova , Zhanna Ospanova , Thierry Djenizian , Fyodor Malchik","doi":"10.1016/j.fuel.2025.135227","DOIUrl":null,"url":null,"abstract":"<div><div>This comprehensive review examines the current landscape of hydrogen evolution reaction catalysts, focusing on the critical balance between performance and cost for large-scale hydrogen production. The study analyzes a wide range of materials, from expensive noble metals to more economical transition metal compounds, providing detailed cost estimates based on initial components. While noble metals demonstrate benchmark performance with low overpotentials, their high costs limit widespread application. The review highlights significant advancements in developing cost-effective alternatives, such as transition metal oxides, sulfides, phosphides, and nitrides, which offer comparable catalytic activity at a fraction of the cost. The analysis reveals promising trends in material design and synthesis strategies that could lead to catalysts combining high activity, long-term stability, and low cost, crucial for the widespread implementation of hydrogen. This review serves as a valuable resource for guiding future research efforts towards developing affordable and efficient hydrogen evolution reaction catalysts for industrial applications.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"395 ","pages":"Article 135227"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125009524","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This comprehensive review examines the current landscape of hydrogen evolution reaction catalysts, focusing on the critical balance between performance and cost for large-scale hydrogen production. The study analyzes a wide range of materials, from expensive noble metals to more economical transition metal compounds, providing detailed cost estimates based on initial components. While noble metals demonstrate benchmark performance with low overpotentials, their high costs limit widespread application. The review highlights significant advancements in developing cost-effective alternatives, such as transition metal oxides, sulfides, phosphides, and nitrides, which offer comparable catalytic activity at a fraction of the cost. The analysis reveals promising trends in material design and synthesis strategies that could lead to catalysts combining high activity, long-term stability, and low cost, crucial for the widespread implementation of hydrogen. This review serves as a valuable resource for guiding future research efforts towards developing affordable and efficient hydrogen evolution reaction catalysts for industrial applications.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.