Determination of shear strength parameters of in-situ soil rock mixtures using large scale shear apparatus and comparison with laboratory tested samples

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Janardhana Prasanth Gunupuram, Rakesh Kumar, D. Deb
{"title":"Determination of shear strength parameters of in-situ soil rock mixtures using large scale shear apparatus and comparison with laboratory tested samples","authors":"Janardhana Prasanth Gunupuram,&nbsp;Rakesh Kumar,&nbsp;D. Deb","doi":"10.1016/j.enggeo.2025.108060","DOIUrl":null,"url":null,"abstract":"<div><div>Soil-rock mixtures (SRM) from mine overburden form heterogeneous dump slopes, whose stability relies on their shear strength properties. This study investigates the shear strength properties and deformation characteristics of SRM in both in-situ and laboratory conditions. Total twelve in-situ tests were conducted on SRM samples with a newly developed large scale direct shear apparatus (60 cm × 60 cm × 30 cm). The in-situ moist density and moisture content of SRM are determined. Particle size distribution is performed to characterize the SRM in laboratory. The bottom bench has the highest cohesion (64 kPa) due to high compaction over time while the other benches have consistent cohesion values (25 kPa to33 kPa). The laboratory estimated cohesion values are high compared to in-situ condition. It is further observed that for in-situ samples, the moist density notably affects the cohesion of SRM, with cohesion decreasing by 3 to 5 % for every 1 % increase in moist density. At in-situ condition, internal friction angles are found to be 1.5 to 1.7 times compared to laboratory values which is due to the presence of the bigger sized particles in the SRM. The outcomes of the research are very informative and useful for geotechnical engineers for slope designing and numerical modeling purpose.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"352 ","pages":"Article 108060"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001565","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-rock mixtures (SRM) from mine overburden form heterogeneous dump slopes, whose stability relies on their shear strength properties. This study investigates the shear strength properties and deformation characteristics of SRM in both in-situ and laboratory conditions. Total twelve in-situ tests were conducted on SRM samples with a newly developed large scale direct shear apparatus (60 cm × 60 cm × 30 cm). The in-situ moist density and moisture content of SRM are determined. Particle size distribution is performed to characterize the SRM in laboratory. The bottom bench has the highest cohesion (64 kPa) due to high compaction over time while the other benches have consistent cohesion values (25 kPa to33 kPa). The laboratory estimated cohesion values are high compared to in-situ condition. It is further observed that for in-situ samples, the moist density notably affects the cohesion of SRM, with cohesion decreasing by 3 to 5 % for every 1 % increase in moist density. At in-situ condition, internal friction angles are found to be 1.5 to 1.7 times compared to laboratory values which is due to the presence of the bigger sized particles in the SRM. The outcomes of the research are very informative and useful for geotechnical engineers for slope designing and numerical modeling purpose.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信