Sumit Bahl , Gerry L. Knapp , Alexander Gomez , Jonathan D. Poplawsky , James A. Haynes , Ryan R. Dehoff , Alex Plotkowski , Amit Shyam
{"title":"Impact of droplet oxidation on mechanical properties of an Al-7Si-0.4Mg alloy fabricated with liquid metal jetting","authors":"Sumit Bahl , Gerry L. Knapp , Alexander Gomez , Jonathan D. Poplawsky , James A. Haynes , Ryan R. Dehoff , Alex Plotkowski , Amit Shyam","doi":"10.1016/j.addma.2025.104775","DOIUrl":null,"url":null,"abstract":"<div><div>Droplet-on-demand liquid metal jetting (DOD-LMJ) is a new method for additive manufacturing of bulk structural alloys. Here, we report on the microstructure, tensile, and fatigue properties of an Al-7Si-0.4Mg (A356) alloy fabricated with LMJ. Liquid metal droplets were shielded by high-purity Ar gas shroud during deposition. Atom probe tomography revealed that a few nanometers thick (Al-Mg-Si)-O oxide film formed on the droplets despite Ar gas shielding. Tensile tests on peak-aged LMJ A356 alloy showed that yield strength was isotropic (250 MPa), but ductility was lower in the build direction (6.1 ± 1.4 %) compared to the transverse direction (9.4 ± 1.0 %). Lower ductility in the build direction was attributed to delamination of metal-oxide interfaces at layer boundaries. The ductility and yield strength of LMJ A356 were similar to cast A356 and laser powder bed fused (LPBF) A357 alloys, indicating the limited impact of oxide film on tensile properties. The oxide film severely impacted the fatigue properties. Fatigue resistance of LMJ A356 was limited by fatigue crack initiation at lack-of-fusion defects and fatigue crack propagation along layer boundaries by delamination of the metal-oxide interface. The fatigue strength of LMJ A356 at 60 MPa was lower than cast A356 and LPBF A357 alloys in the peak-aged condition. This research underscores the need for managing droplet oxidation during LMJ additive manufacturing of structural alloys.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"103 ","pages":"Article 104775"},"PeriodicalIF":10.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001393","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Droplet-on-demand liquid metal jetting (DOD-LMJ) is a new method for additive manufacturing of bulk structural alloys. Here, we report on the microstructure, tensile, and fatigue properties of an Al-7Si-0.4Mg (A356) alloy fabricated with LMJ. Liquid metal droplets were shielded by high-purity Ar gas shroud during deposition. Atom probe tomography revealed that a few nanometers thick (Al-Mg-Si)-O oxide film formed on the droplets despite Ar gas shielding. Tensile tests on peak-aged LMJ A356 alloy showed that yield strength was isotropic (250 MPa), but ductility was lower in the build direction (6.1 ± 1.4 %) compared to the transverse direction (9.4 ± 1.0 %). Lower ductility in the build direction was attributed to delamination of metal-oxide interfaces at layer boundaries. The ductility and yield strength of LMJ A356 were similar to cast A356 and laser powder bed fused (LPBF) A357 alloys, indicating the limited impact of oxide film on tensile properties. The oxide film severely impacted the fatigue properties. Fatigue resistance of LMJ A356 was limited by fatigue crack initiation at lack-of-fusion defects and fatigue crack propagation along layer boundaries by delamination of the metal-oxide interface. The fatigue strength of LMJ A356 at 60 MPa was lower than cast A356 and LPBF A357 alloys in the peak-aged condition. This research underscores the need for managing droplet oxidation during LMJ additive manufacturing of structural alloys.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.