Yameng Zhang , Hua Tian , Min Wan , Shihao Tang , Ziyun Ding , Wei Huang , Yamin Yang , Weitao Li
{"title":"High resolution photoacoustic vascular image reconstruction through the fast residual dense generative adversarial network","authors":"Yameng Zhang , Hua Tian , Min Wan , Shihao Tang , Ziyun Ding , Wei Huang , Yamin Yang , Weitao Li","doi":"10.1016/j.pacs.2025.100720","DOIUrl":null,"url":null,"abstract":"<div><div>Photoacoustic imaging is a powerful technique that provides high-resolution, deep tissue imaging. However, the time-intensive nature of photoacoustic microscopy (PAM) poses a significant challenge, especially when high-resolution images are required for real-time applications. In this study, we proposed an optimized Fast Residual Dense Generative Adversarial Network (FRDGAN) for high-quality PAM reconstruction. Through dataset validation on mouse ear vasculature, FRDGAN demonstrated superior performance in image quality, background noise suppression, and computational efficiency across multiple down-sampling scales (×4, ×8) compared to classical methods. Furthermore, in the in vivo experiments of mouse cerebral vasculature, FRDGAN achieves the improvement of 2.24 dB and 0.0255 in peak signal-to-noise ratio and structural similarity metrics in contrast to SRGAN, respectively. Our FRDGAN method provides a promising solution for fast, high-quality PAM microvascular imaging in biomedical research.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"43 ","pages":"Article 100720"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000436","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic imaging is a powerful technique that provides high-resolution, deep tissue imaging. However, the time-intensive nature of photoacoustic microscopy (PAM) poses a significant challenge, especially when high-resolution images are required for real-time applications. In this study, we proposed an optimized Fast Residual Dense Generative Adversarial Network (FRDGAN) for high-quality PAM reconstruction. Through dataset validation on mouse ear vasculature, FRDGAN demonstrated superior performance in image quality, background noise suppression, and computational efficiency across multiple down-sampling scales (×4, ×8) compared to classical methods. Furthermore, in the in vivo experiments of mouse cerebral vasculature, FRDGAN achieves the improvement of 2.24 dB and 0.0255 in peak signal-to-noise ratio and structural similarity metrics in contrast to SRGAN, respectively. Our FRDGAN method provides a promising solution for fast, high-quality PAM microvascular imaging in biomedical research.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.