Enhanced copper-adsorption removal from water by easy-handling silica aerogel-polyurethane foam composites

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Beatriz Merillas , Miguel Ángel Rodríguez-Pérez , Luisa Durães
{"title":"Enhanced copper-adsorption removal from water by easy-handling silica aerogel-polyurethane foam composites","authors":"Beatriz Merillas ,&nbsp;Miguel Ángel Rodríguez-Pérez ,&nbsp;Luisa Durães","doi":"10.1016/j.jiec.2024.11.041","DOIUrl":null,"url":null,"abstract":"<div><div>Safe water supply has become one of the main concerns of our society due to the intense industrial activities generating hazardous waste. Among the water pollutants, copper ions are known for potential diseases caused by accumulation of this metal. Therefore, different adsorbents have been produced for this purpose, highlighting aerogels for their effective adsorption owing to their high surface areas and porosity. Herein the synthesis of a novel silica aerogel-based composite for copper removal is described. It was produced by the sol–gel technique, synthesizing the silica aerogel into a reticulated-polyurethane foam that acted as a macrocellular skeleton, preventing a strong shrinkage of the aerogel during the ambient pressure drying. The produced aerogels and composites were characterized in terms of density, textural properties, hydrophobicity, and copper removal efficiency. Isotherm studies revealed a significantly improved adsorption capacity in comparison with the monolithic aerogel, reaching a maximum value of 46.13 mg g<sup>−1</sup>. The predominant adsorption mechanism was Langmuir- Freundlich adsorption. The adsorption kinetics were also evaluated by different models, as well as the ability to function as filtration medium. Therefore, this work provides a promising strategy for copper uptake avoiding tedious filtration steps to separate the adsorbent, thus reducing time and costs.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"146 ","pages":"Pages 578-588"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X24007809","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Safe water supply has become one of the main concerns of our society due to the intense industrial activities generating hazardous waste. Among the water pollutants, copper ions are known for potential diseases caused by accumulation of this metal. Therefore, different adsorbents have been produced for this purpose, highlighting aerogels for their effective adsorption owing to their high surface areas and porosity. Herein the synthesis of a novel silica aerogel-based composite for copper removal is described. It was produced by the sol–gel technique, synthesizing the silica aerogel into a reticulated-polyurethane foam that acted as a macrocellular skeleton, preventing a strong shrinkage of the aerogel during the ambient pressure drying. The produced aerogels and composites were characterized in terms of density, textural properties, hydrophobicity, and copper removal efficiency. Isotherm studies revealed a significantly improved adsorption capacity in comparison with the monolithic aerogel, reaching a maximum value of 46.13 mg g−1. The predominant adsorption mechanism was Langmuir- Freundlich adsorption. The adsorption kinetics were also evaluated by different models, as well as the ability to function as filtration medium. Therefore, this work provides a promising strategy for copper uptake avoiding tedious filtration steps to separate the adsorbent, thus reducing time and costs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信