{"title":"Neuroprotective effect of Thymus vulgaris on paraquat induced Parkinson's disease","authors":"Naheed Akhter , Iqra Rafiq , Amer Jamil , Zunera Chauhdary , Anum Mustafa , Aqsa Nisar","doi":"10.1016/j.bbrc.2025.151740","DOIUrl":null,"url":null,"abstract":"<div><div>The dramatic surge of neurodegenerative disorders among elderly population underscore the pressing demand for development of optimal and evidence based noninvasive natural treatment strategies. Paraquat exposure in animal models used in scientific studies can cause a variety of clinical signs of Parkinson disease (PD). The health benefits of thyme include antioxidant, anti-inflammatory, pulmonary, and neurological benefits. Thyme and other herbal treatments are frequently used to treat a variety of conditions, including neurological issues. The primary factor in the etiology of neurodegeneration is oxidative stress. Conventional treatments are indicated to potentially have negative side effects. The primary phytochemicals of <em>Thymus vulgaris</em> (TV), which are responsible for its unique therapeutic property of neuro-protection, include hydrocarbon and phenolic compounds like thymol and carvacrol. The goal of the current investigation was to examine <em>T. vulgaris'</em> potential for neuroprotection while also ensuring its safety. Analyses of the plant's physicochemical and phytochemical composition were performed by liquid chromatographic analysis. Neuro-behavioral and biochemical parameters were evaluated to determine the impact of <em>T. vulgaris</em> in paraquat induced parkinsonian rodents model. The neurobehavioral tests include open field tests for movement and exploration, Y maze test and elevated plus maze test for natural behavior, memory, and anxiety, hole board tests for exploratory behavior, ladder climbing, foot printing, and wire hanging tests for estimating neuromuscular coordination. <em>T. vulgaris</em> treatment significantly improved neurobehavioral parameters dose-dependently, Biochemical analysis revealed that extract treatment mitigated the declined level of antioxidant enzymes. RT-PCR analysis showed that in paraquat treated group mRNA expression of IL-1α, IL-1β, Alpha-Synuclein, TNF-α, and IL-6 was upregulated markedly. However, <em>T. vulgaris</em> treatment dose dependently down-regulated the mRNA expression of these genes. The groundbreaking results of current study revealed that <em>T. vulgaris</em> restored the degenerative alterations, neuro-inflammation, and nerve loss in the brain structure, as evident by histopathological investigation. Particularly remarkable restoration in neuropsychological and biochemical markers emphasize the medicinal potential of <em>T. vulgaris</em> as a revolutionary treatment for neurodegenerative disorders, offering new hope for millions worldwide afflicted by these devastating conditions.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"761 ","pages":"Article 151740"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25004541","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dramatic surge of neurodegenerative disorders among elderly population underscore the pressing demand for development of optimal and evidence based noninvasive natural treatment strategies. Paraquat exposure in animal models used in scientific studies can cause a variety of clinical signs of Parkinson disease (PD). The health benefits of thyme include antioxidant, anti-inflammatory, pulmonary, and neurological benefits. Thyme and other herbal treatments are frequently used to treat a variety of conditions, including neurological issues. The primary factor in the etiology of neurodegeneration is oxidative stress. Conventional treatments are indicated to potentially have negative side effects. The primary phytochemicals of Thymus vulgaris (TV), which are responsible for its unique therapeutic property of neuro-protection, include hydrocarbon and phenolic compounds like thymol and carvacrol. The goal of the current investigation was to examine T. vulgaris' potential for neuroprotection while also ensuring its safety. Analyses of the plant's physicochemical and phytochemical composition were performed by liquid chromatographic analysis. Neuro-behavioral and biochemical parameters were evaluated to determine the impact of T. vulgaris in paraquat induced parkinsonian rodents model. The neurobehavioral tests include open field tests for movement and exploration, Y maze test and elevated plus maze test for natural behavior, memory, and anxiety, hole board tests for exploratory behavior, ladder climbing, foot printing, and wire hanging tests for estimating neuromuscular coordination. T. vulgaris treatment significantly improved neurobehavioral parameters dose-dependently, Biochemical analysis revealed that extract treatment mitigated the declined level of antioxidant enzymes. RT-PCR analysis showed that in paraquat treated group mRNA expression of IL-1α, IL-1β, Alpha-Synuclein, TNF-α, and IL-6 was upregulated markedly. However, T. vulgaris treatment dose dependently down-regulated the mRNA expression of these genes. The groundbreaking results of current study revealed that T. vulgaris restored the degenerative alterations, neuro-inflammation, and nerve loss in the brain structure, as evident by histopathological investigation. Particularly remarkable restoration in neuropsychological and biochemical markers emphasize the medicinal potential of T. vulgaris as a revolutionary treatment for neurodegenerative disorders, offering new hope for millions worldwide afflicted by these devastating conditions.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics