Víctor A. Vargas-Pérez;Jesús Giráldez-Cru;Pablo Mesejo;Oscar Cordón
{"title":"Unveiling Agents’ Confidence in Opinion Dynamics Models via Graph Neural Networks","authors":"Víctor A. Vargas-Pérez;Jesús Giráldez-Cru;Pablo Mesejo;Oscar Cordón","doi":"10.1109/TCSS.2024.3508452","DOIUrl":null,"url":null,"abstract":"Opinion Dynamics models in social networks are a valuable tool to study how opinions evolve within a population. However, these models often rely on agent-level parameters that are difficult to measure in a real population. This is the case of the confidence threshold in opinion dynamics models based on bounded confidence, where agents are only influenced by other agents having a similar opinion (given by this confidence threshold). Consequently, a common practice is to apply a universal threshold to the entire population and calibrate its value to match observed real-world data, despite being an unrealistic assumption. In this work, we propose an alternative approach using graph neural networks to infer agent-level confidence thresholds in the opinion dynamics of the Hegselmann-Krause model of bounded confidence. This eliminates the need for additional simulations when faced with new case studies. To this end, we construct a comprehensive synthetic training dataset that includes different network topologies and configurations of thresholds and opinions. Through multiple training runs utilizing different architectures, we identify GraphSAGE as the most effective solution, achieving a coefficient of determination <inline-formula><tex-math>$R^{2}$</tex-math></inline-formula> above 0.7 in test datasets derived from real-world topologies. Remarkably, this performance holds even when the test topologies differ in size from those considered during training.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 2","pages":"725-737"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10792931","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10792931/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Opinion Dynamics models in social networks are a valuable tool to study how opinions evolve within a population. However, these models often rely on agent-level parameters that are difficult to measure in a real population. This is the case of the confidence threshold in opinion dynamics models based on bounded confidence, where agents are only influenced by other agents having a similar opinion (given by this confidence threshold). Consequently, a common practice is to apply a universal threshold to the entire population and calibrate its value to match observed real-world data, despite being an unrealistic assumption. In this work, we propose an alternative approach using graph neural networks to infer agent-level confidence thresholds in the opinion dynamics of the Hegselmann-Krause model of bounded confidence. This eliminates the need for additional simulations when faced with new case studies. To this end, we construct a comprehensive synthetic training dataset that includes different network topologies and configurations of thresholds and opinions. Through multiple training runs utilizing different architectures, we identify GraphSAGE as the most effective solution, achieving a coefficient of determination $R^{2}$ above 0.7 in test datasets derived from real-world topologies. Remarkably, this performance holds even when the test topologies differ in size from those considered during training.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.