{"title":"Unraveling the Deception of Web3 Phishing Scams: Dynamic Multiperspective Cascade Graph Approach for Ethereum Phishing Detection","authors":"Lejun Zhang;Xucan Zhang;Siyi Xiao;Zexin Li;Shen Su;Jing Qiu;Zhihong Tian","doi":"10.1109/TCSS.2024.3516144","DOIUrl":null,"url":null,"abstract":"Ethereum, as one of the most active cryptocurrency trading platforms, has garnered significant academic interest due to its transparent and accessible transaction data. In recent years, phishing scams have emerged as a serious criminal activity on Ethereum. Although most studies model Ethereum account transactions as networks and analyze them using traditional machine learning or network representation learning techniques, these approaches often rely solely on the latest static transaction records or use manually designed features while neglecting transaction histories, thus failing to fully capture the dynamic interactions and potential trading patterns between accounts. This article introduces an innovative multiperspective cascaded dynamic graph neural network model named DMPCG, which extracts phishing transaction data from authoritative databases like blockchain explorers to construct transaction network graphs. The model elevates the analysis from the microscopic features of nodes to the macroscopic dynamics of the entire network, integrating the attributes of static snapshot graphs with the evolution of dynamic trading networks, significantly enhancing the accuracy of phishing detection. Experimental results demonstrate that the DMPCG method achieves an impressive precision of 92.6% and an F1-score of 90.9%, outperforming existing baseline models and traditional subgraph sampling techniques.","PeriodicalId":13044,"journal":{"name":"IEEE Transactions on Computational Social Systems","volume":"12 2","pages":"498-510"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Social Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819291/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ethereum, as one of the most active cryptocurrency trading platforms, has garnered significant academic interest due to its transparent and accessible transaction data. In recent years, phishing scams have emerged as a serious criminal activity on Ethereum. Although most studies model Ethereum account transactions as networks and analyze them using traditional machine learning or network representation learning techniques, these approaches often rely solely on the latest static transaction records or use manually designed features while neglecting transaction histories, thus failing to fully capture the dynamic interactions and potential trading patterns between accounts. This article introduces an innovative multiperspective cascaded dynamic graph neural network model named DMPCG, which extracts phishing transaction data from authoritative databases like blockchain explorers to construct transaction network graphs. The model elevates the analysis from the microscopic features of nodes to the macroscopic dynamics of the entire network, integrating the attributes of static snapshot graphs with the evolution of dynamic trading networks, significantly enhancing the accuracy of phishing detection. Experimental results demonstrate that the DMPCG method achieves an impressive precision of 92.6% and an F1-score of 90.9%, outperforming existing baseline models and traditional subgraph sampling techniques.
期刊介绍:
IEEE Transactions on Computational Social Systems focuses on such topics as modeling, simulation, analysis and understanding of social systems from the quantitative and/or computational perspective. "Systems" include man-man, man-machine and machine-machine organizations and adversarial situations as well as social media structures and their dynamics. More specifically, the proposed transactions publishes articles on modeling the dynamics of social systems, methodologies for incorporating and representing socio-cultural and behavioral aspects in computational modeling, analysis of social system behavior and structure, and paradigms for social systems modeling and simulation. The journal also features articles on social network dynamics, social intelligence and cognition, social systems design and architectures, socio-cultural modeling and representation, and computational behavior modeling, and their applications.