Feature selection via label enhancement and neighborhood rough set for multi-label data with unbalanced distribution

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenbin Qian , Wenyong Ruan , Xiwen Lu , Wenji Yang , Jintao Huang
{"title":"Feature selection via label enhancement and neighborhood rough set for multi-label data with unbalanced distribution","authors":"Wenbin Qian ,&nbsp;Wenyong Ruan ,&nbsp;Xiwen Lu ,&nbsp;Wenji Yang ,&nbsp;Jintao Huang","doi":"10.1016/j.asoc.2025.113028","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-label learning has gained significant attention in classification tasks, but challenges remain in handling high-dimensional data. Although feature selection techniques can alleviate these issues, neglecting the unbalanced data distribution problem severely undermines the models’ accuracy. Furthermore, existing methods fail to account for the importance and correlation of labels. In this paper, we present a novel multi-label feature selection algorithm that addresses these issues through three innovations: (1) using <span><math><mi>k</mi></math></span>-nearest neighbors to capture local similarities in unbalanced data, (2) enhancing labels by converting them into distributions to enrich semantic information, and (3) introducing a new evaluation function to assess label correlations. A multi-criteria strategy is established to maximize feature-label relevance, minimize redundancy, and strengthen label correlations. Experimental results on fifteen multi-label datasets demonstrate the algorithm’s superiority over five state-of-the-art methods.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"175 ","pages":"Article 113028"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625003394","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label learning has gained significant attention in classification tasks, but challenges remain in handling high-dimensional data. Although feature selection techniques can alleviate these issues, neglecting the unbalanced data distribution problem severely undermines the models’ accuracy. Furthermore, existing methods fail to account for the importance and correlation of labels. In this paper, we present a novel multi-label feature selection algorithm that addresses these issues through three innovations: (1) using k-nearest neighbors to capture local similarities in unbalanced data, (2) enhancing labels by converting them into distributions to enrich semantic information, and (3) introducing a new evaluation function to assess label correlations. A multi-criteria strategy is established to maximize feature-label relevance, minimize redundancy, and strengthen label correlations. Experimental results on fifteen multi-label datasets demonstrate the algorithm’s superiority over five state-of-the-art methods.
基于标签增强和邻域粗糙集的非平衡多标签数据特征选择
多标签学习在分类任务中获得了极大的关注,但在处理高维数据方面仍然存在挑战。虽然特征选择技术可以缓解这些问题,但如果忽略不平衡数据分布问题,就会严重影响模型的准确性。此外,现有方法未能考虑标签的重要性和相关性。在本文中,我们提出了一种新型多标签特征选择算法,该算法通过三项创新解决了这些问题:(1) 使用 k 近邻捕捉不平衡数据中的局部相似性;(2) 通过将标签转换为分布来增强标签,从而丰富语义信息;(3) 引入新的评估函数来评估标签相关性。我们建立了一种多标准策略,以最大限度地提高特征-标签相关性、最小化冗余和加强标签相关性。在 15 个多标签数据集上的实验结果表明,该算法优于五种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信