Anion Engineering of LiVPO4F(1-x)Ox Enables Fast-Charge and Wide-Temperature Lithium-Ion Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjun Luo, Chuanyang Li, Xinyue Zhang, Chuanlong Ji, Baojuan Xi, Xuguang An, Wutao Mao, Keyan Bao, Shenglin Xiong
{"title":"Anion Engineering of LiVPO4F(1-x)Ox Enables Fast-Charge and Wide-Temperature Lithium-Ion Batteries","authors":"Wenjun Luo,&nbsp;Chuanyang Li,&nbsp;Xinyue Zhang,&nbsp;Chuanlong Ji,&nbsp;Baojuan Xi,&nbsp;Xuguang An,&nbsp;Wutao Mao,&nbsp;Keyan Bao,&nbsp;Shenglin Xiong","doi":"10.1002/adfm.202500528","DOIUrl":null,"url":null,"abstract":"<p>The Tavorite-structured polyanionic lithium-ion batteries (LIBs) cathode material LiVPO<sub>4</sub>F (LVPF) shows great promise for high-power applications due to its excellent safety and rapid charge–discharge capabilities. This study introduces a novel oxygen-substituted variant LiVPO<sub>4</sub>F<sub>(1-x)</sub>O<sub>x</sub>, synthesized through a one-step hydrothermal method, producing a nanosheet structure. Advanced characterization confirms the formula of LiVPO<sub>4</sub>F<sub>0.69</sub>O<sub>0.31</sub> (LVPFO). Electrochemical evaluations indicate that replacing part of F with O lowers charge–discharge plateau voltage and polarization at high current densities. The material exhibits discharge capacities of 156.6–86.4 mAh g<sup>−1</sup> at various rates (0.1–15 C). It retains 90.1% of its capacity after 1000 cycles at 15 C. LVPFO further demonstrates fast ion/electron transport and excellent structural stability across an extensive temperature range (−40–50 °C). An experimental full-cell with carbon-coated TiNb<sub>2</sub>O<sub>7</sub> (TNO@C) anode and LVPFO cathode achieves a capacity of 127.5 mAh g<sup>−1</sup> and an energy density of 319 Wh kg<sup>−1</sup> at 0.5 C, and a good capacity retention of 73.7% over 1000 cycles at 10 C. Density Functional Theory (DFT) calculations indicate that the partial substitution of F with O endows LVPFO with a lower Li<sup>+</sup> diffusion energy barrier and improves electronic conductivity. This study offers valuable insights for the advancement of high-energy and power-density cathode materials in LIBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 37","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202500528","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Tavorite-structured polyanionic lithium-ion batteries (LIBs) cathode material LiVPO4F (LVPF) shows great promise for high-power applications due to its excellent safety and rapid charge–discharge capabilities. This study introduces a novel oxygen-substituted variant LiVPO4F(1-x)Ox, synthesized through a one-step hydrothermal method, producing a nanosheet structure. Advanced characterization confirms the formula of LiVPO4F0.69O0.31 (LVPFO). Electrochemical evaluations indicate that replacing part of F with O lowers charge–discharge plateau voltage and polarization at high current densities. The material exhibits discharge capacities of 156.6–86.4 mAh g−1 at various rates (0.1–15 C). It retains 90.1% of its capacity after 1000 cycles at 15 C. LVPFO further demonstrates fast ion/electron transport and excellent structural stability across an extensive temperature range (−40–50 °C). An experimental full-cell with carbon-coated TiNb2O7 (TNO@C) anode and LVPFO cathode achieves a capacity of 127.5 mAh g−1 and an energy density of 319 Wh kg−1 at 0.5 C, and a good capacity retention of 73.7% over 1000 cycles at 10 C. Density Functional Theory (DFT) calculations indicate that the partial substitution of F with O endows LVPFO with a lower Li+ diffusion energy barrier and improves electronic conductivity. This study offers valuable insights for the advancement of high-energy and power-density cathode materials in LIBs.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

LiVPO4F(1-x)Ox 的阴离子工程可实现快速充电和宽温锂离子电池
tavorite结构的聚阴离子锂离子电池(LIBs)正极材料LiVPO4F (LVPF)由于其出色的安全性和快速充放电能力,在高功率应用中显示出巨大的前景。本研究介绍了一种新的氧取代变体LiVPO4F(1-x)Ox,通过一步水热法合成,产生纳米片结构。进一步表征证实了LiVPO4F0.69O0.31 (LVPFO)的公式。电化学评价表明,在高电流密度下,用O代替部分F可以降低充放电平台电压和极化。该材料在不同速率(0.1-15℃)下的放电容量为156.6-86.4 mAh g - 1,在15℃下循环1000次后仍能保持90.1%的容量。LVPFO进一步证明了在广泛的温度范围(- 40-50℃)下离子/电子的快速传输和优异的结构稳定性。以碳包覆的TiNb2O7 (TNO@C)为阳极,LVPFO为阴极的实验电池在0.5℃下的容量为127.5 mAh g−1,能量密度为319 Wh kg−1,在10℃下1000次循环的容量保持率为73.7%。密度功能理论(DFT)计算表明,F被O部分取代使LVPFO具有较低的Li+扩散能垒,提高了电子导电性。该研究为锂离子电池中高能和功率密度正极材料的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信