Point-of-Care Colorimetric Biosensor for H2O2 and Glucose Detection Utilizing the Peroxidase-like Activity of 2D Bimetallic Metal Organic Framework Nanosheets

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Yasmeen M. Abdelfattah, Amr M. Mahmoud, Noha I. Abdelaziz, Dina A. El Mously
{"title":"Point-of-Care Colorimetric Biosensor for H2O2 and Glucose Detection Utilizing the Peroxidase-like Activity of 2D Bimetallic Metal Organic Framework Nanosheets","authors":"Yasmeen M. Abdelfattah, Amr M. Mahmoud, Noha I. Abdelaziz, Dina A. El Mously","doi":"10.1016/j.aca.2025.343993","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>The applications of natural enzymes are vast, limited only by their protein nature. Therefore, the development of artificial enzyme mimetics, nanozymes, which are stable and have improved activity, has become indispensable for biomedical and diagnostic purposes. Nanozymes have developed into an emergent topic combining nanotechnology and biology due to their vast range of potential uses. In comparison to natural peroxidase, peroxidase-imitating nanozymes have distinct benefits in terms of high stability and low cost for applications in bioanalysis and environmental remediation. The use of metal-organic framework nanoparticles has exhibited enhanced catalytic and enzymatic performance.<h3>Results</h3>In the current work, we present a strategy for synthesizing 2D Ni/Co MOF nanoparticles that have been anchored onto carboxymethyl cellulose (CMC). The resulting composite (Ni/Co-MOF@CMC) 2D nanosheets exhibit a high surface area and abundant catalytic sites, greatly amplifying their peroxidase-like catalytic performance. Additionally, these 2D bimetallic MOFs mimic the peroxidase activity, demonstrated by the distinctive yellow colour upon the oxidation of o-Phenylenediamine (OPD) by hydrogen peroxide. This newly synthesized 2D bimetallic MOF provides a straightforward, simple, selective, and sensitive colorimetric analysis technique for the determination of hydrogen peroxide and glucose. H<sub>2</sub>O<sub>2</sub> could be efficiently detected with a linear range of 10 μM to 800 μM and a lower detection limit of 3.28 μM. With the potential to detect minute glucose concentrations as low as 200 μM within a linear range of 200 μM to 600 μM.<h3>Significance and Novelty</h3>This work demonstrates the significant novelty of applying an RGB colour sensor (TCS34725) for the quantitative measurement of H<sub>2</sub>O<sub>2</sub> and glucose which holds great potential as a point-of-care platform for diabetic patients. Consequently, our approach broadens the use of MOFs in biosensing and presents a viable substitute for affordable, and easily accessible diabetes monitoring. These 2D bimetallic MOFs are promising materials for glucose detection applications, expanding the utility of MOFs to include biosensor applications.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"217 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343993","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The applications of natural enzymes are vast, limited only by their protein nature. Therefore, the development of artificial enzyme mimetics, nanozymes, which are stable and have improved activity, has become indispensable for biomedical and diagnostic purposes. Nanozymes have developed into an emergent topic combining nanotechnology and biology due to their vast range of potential uses. In comparison to natural peroxidase, peroxidase-imitating nanozymes have distinct benefits in terms of high stability and low cost for applications in bioanalysis and environmental remediation. The use of metal-organic framework nanoparticles has exhibited enhanced catalytic and enzymatic performance.

Results

In the current work, we present a strategy for synthesizing 2D Ni/Co MOF nanoparticles that have been anchored onto carboxymethyl cellulose (CMC). The resulting composite (Ni/Co-MOF@CMC) 2D nanosheets exhibit a high surface area and abundant catalytic sites, greatly amplifying their peroxidase-like catalytic performance. Additionally, these 2D bimetallic MOFs mimic the peroxidase activity, demonstrated by the distinctive yellow colour upon the oxidation of o-Phenylenediamine (OPD) by hydrogen peroxide. This newly synthesized 2D bimetallic MOF provides a straightforward, simple, selective, and sensitive colorimetric analysis technique for the determination of hydrogen peroxide and glucose. H2O2 could be efficiently detected with a linear range of 10 μM to 800 μM and a lower detection limit of 3.28 μM. With the potential to detect minute glucose concentrations as low as 200 μM within a linear range of 200 μM to 600 μM.

Significance and Novelty

This work demonstrates the significant novelty of applying an RGB colour sensor (TCS34725) for the quantitative measurement of H2O2 and glucose which holds great potential as a point-of-care platform for diabetic patients. Consequently, our approach broadens the use of MOFs in biosensing and presents a viable substitute for affordable, and easily accessible diabetes monitoring. These 2D bimetallic MOFs are promising materials for glucose detection applications, expanding the utility of MOFs to include biosensor applications.

Abstract Image

利用二维双金属金属有机框架纳米片的过氧化物酶样活性检测 H2O2 和葡萄糖的床旁比色生物传感器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信