Optimizing the endurance mechanisms of chalcogenide-based thermoelectric materials and devices

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Guang-Kun Ren, Luping Song, Ruopu Liu, Li Ma, Yu Tian, Zhijie Wei, Yan Shi, Zhe Zheng, Yiying Zhao, Yuan-Hua Lin
{"title":"Optimizing the endurance mechanisms of chalcogenide-based thermoelectric materials and devices","authors":"Guang-Kun Ren, Luping Song, Ruopu Liu, Li Ma, Yu Tian, Zhijie Wei, Yan Shi, Zhe Zheng, Yiying Zhao, Yuan-Hua Lin","doi":"10.1063/5.0244411","DOIUrl":null,"url":null,"abstract":"With superior thermoelectric transport properties, chalcogenide-based materials are considered to be promising candidates for energy conversion. As compared to the strategies enhancing thermoelectric performance, the related research works focusing on endurance mechanisms during long-term working, however, are insufficient and should be systematically evaluated for making broad applications. Specifically, systematic issues divided into mechanic, thermodynamic, and kinetic sections could play a predominated role in challenging different constituents per the intrinsic mechanisms, and the inferior stability of chalcogenides limits further developments in the next decades. In this review, typical material systems like Pb-, Cu-, and Bi-based chalcogenides as well as several emerging compounds like Ag-, Sn-, and oxygen-containing compounds would be referred and discussed extensively, focusing on the endurance ability. Subsequently, four kinds of mechanisms at different levels would be systematically summarized and investigated: first, considering the key roles on affecting mechanical stability and optimizing the compositions for forming proper bonding strength and microstructures for high density are required. Second, it is crucial to explore the interactions between the elemental vapor pressure and the service temperature in chalcogenides. Third, the uncertainties introduced by phase-transition phenomena cannot be ignored. In addition, nano-precipitates from low melting point components also put forward high requirements on the endurance. Furthermore, the coincided improvements could benefit the enhanced stability and output performance of applied devices. These unique advances combined with the corresponding strategies for long-term endurance demonstrate the potential of high-performance chalcogenides for large-scale power generation applications.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"59 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244411","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

With superior thermoelectric transport properties, chalcogenide-based materials are considered to be promising candidates for energy conversion. As compared to the strategies enhancing thermoelectric performance, the related research works focusing on endurance mechanisms during long-term working, however, are insufficient and should be systematically evaluated for making broad applications. Specifically, systematic issues divided into mechanic, thermodynamic, and kinetic sections could play a predominated role in challenging different constituents per the intrinsic mechanisms, and the inferior stability of chalcogenides limits further developments in the next decades. In this review, typical material systems like Pb-, Cu-, and Bi-based chalcogenides as well as several emerging compounds like Ag-, Sn-, and oxygen-containing compounds would be referred and discussed extensively, focusing on the endurance ability. Subsequently, four kinds of mechanisms at different levels would be systematically summarized and investigated: first, considering the key roles on affecting mechanical stability and optimizing the compositions for forming proper bonding strength and microstructures for high density are required. Second, it is crucial to explore the interactions between the elemental vapor pressure and the service temperature in chalcogenides. Third, the uncertainties introduced by phase-transition phenomena cannot be ignored. In addition, nano-precipitates from low melting point components also put forward high requirements on the endurance. Furthermore, the coincided improvements could benefit the enhanced stability and output performance of applied devices. These unique advances combined with the corresponding strategies for long-term endurance demonstrate the potential of high-performance chalcogenides for large-scale power generation applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信