Defying the oxidative-addition prerequisite in cross-coupling through artful single-atom catalysts

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiwei Shi, Gang Wang, Duanshuai Tian, Xiao Hai, Rongwei Meng, Yifan Xu, Yu Teng, Lu Ma, Shibo Xi, Youqing Yang, Xin Zhou, Xingjie Fu, Hengyu Li, Qilong Cai, Peng He, Huihui Lin, Jinxing Chen, Jiali Li, Jinghan Li, Qian He, Quan-Hong Yang, Jun Li, Dongshuang Wu, Yang-Gang Wang, Jie Wu, Jiong Lu
{"title":"Defying the oxidative-addition prerequisite in cross-coupling through artful single-atom catalysts","authors":"Jiwei Shi, Gang Wang, Duanshuai Tian, Xiao Hai, Rongwei Meng, Yifan Xu, Yu Teng, Lu Ma, Shibo Xi, Youqing Yang, Xin Zhou, Xingjie Fu, Hengyu Li, Qilong Cai, Peng He, Huihui Lin, Jinxing Chen, Jiali Li, Jinghan Li, Qian He, Quan-Hong Yang, Jun Li, Dongshuang Wu, Yang-Gang Wang, Jie Wu, Jiong Lu","doi":"10.1038/s41467-025-58579-8","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous single-atom catalysts (SACs) have gained significant attention for their maximized atom utilization and well-defined active sites, but they often struggle with multi-stage organic cross-coupling reactions due to limited coordination space and reactivity. Here, we report an “anchoring-borrowing” strategy combined facet engineering to develop artful single-atom catalysts (ASACs) through anchoring foreign single atoms onto specific facets of the non-innocent reducible carriers. ASACs exhibit adaptive coordination, effectively bypassing the oxidative-addition prerequisite for bivalent elevation at a single metal site in both homogenous and heterogeneous cross-couplings. For example, Pd<sub>1</sub>-CeO<sub>2</sub>(110) ASAC exhibits unparalleled activity in coupling with more accessible aryl chlorides, and challenging heterocycles, outperforming traditional catalysts with a remarkable turnover number of 45,327,037. Mechanistic studies reveal that ASACs leverage dynamic structural changes, with reducible carriers acting as electron reservoirs, significantly lowering reaction barriers. Furthermore, ASACs enable efficient synthesis of biologically significant compounds, drug intermediates, and active pharmaceutical ingredients (APIs) through a scalable high-speed circulated flow synthesis, underscoring great potential for sustainable fine chemical manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58579-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous single-atom catalysts (SACs) have gained significant attention for their maximized atom utilization and well-defined active sites, but they often struggle with multi-stage organic cross-coupling reactions due to limited coordination space and reactivity. Here, we report an “anchoring-borrowing” strategy combined facet engineering to develop artful single-atom catalysts (ASACs) through anchoring foreign single atoms onto specific facets of the non-innocent reducible carriers. ASACs exhibit adaptive coordination, effectively bypassing the oxidative-addition prerequisite for bivalent elevation at a single metal site in both homogenous and heterogeneous cross-couplings. For example, Pd1-CeO2(110) ASAC exhibits unparalleled activity in coupling with more accessible aryl chlorides, and challenging heterocycles, outperforming traditional catalysts with a remarkable turnover number of 45,327,037. Mechanistic studies reveal that ASACs leverage dynamic structural changes, with reducible carriers acting as electron reservoirs, significantly lowering reaction barriers. Furthermore, ASACs enable efficient synthesis of biologically significant compounds, drug intermediates, and active pharmaceutical ingredients (APIs) through a scalable high-speed circulated flow synthesis, underscoring great potential for sustainable fine chemical manufacturing.

Abstract Image

通过巧妙的单原子催化剂打破交叉偶联中的氧化加成先决条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信