Generation of fast photoelectrons in strong-field emission from metal nanoparticles

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Erfan Saydanzad, Jeffrey Powell, Tim Renner, Adam Summers, Daniel Rolles, Carlos Trallero-Herrero, Matthias F. Kling, Artem Rudenko, Uwe Thumm
{"title":"Generation of fast photoelectrons in strong-field emission from metal nanoparticles","authors":"Erfan Saydanzad, Jeffrey Powell, Tim Renner, Adam Summers, Daniel Rolles, Carlos Trallero-Herrero, Matthias F. Kling, Artem Rudenko, Uwe Thumm","doi":"10.1515/nanoph-2024-0719","DOIUrl":null,"url":null,"abstract":"We investigated the generation and control of fast photoelectrons (PEs) by exposing plasmonic nanoparticles (NPs) to short infrared (IR) laser pulses with peak intensities between 10<jats:sup>12</jats:sup> and 3 × 10<jats:sup>13</jats:sup> W/cm<jats:sup>2</jats:sup>. Our measured and numerically simulated PE momentum distributions demonstrate the extent to which PE yields and cutoff energies are controlled by the NP size, material, and laser peak intensity. For strong-field photoemission from spherical silver, gold, and platinum NPs with diameters between 10 and 100 nm our results confirm and surpass extremely high PEs cutoff energies, up to several hundred times the incident laser-pulse ponderomotive energy, found recently for gold nanospheres [Saydanzad et al., Nanophotonics 12, 1931 (2023)]. As reported previously for dielectric NPs [Rupp et al., J. Mod. Opt. 64, 995 (2017)], at higher intensities the cutoff energies we deduce from measured and simulated PE spectra tend to converge to a metal-independent limit. We expect these characteristics of light-induced electron emission from prototypical plasmonic metallic nanospheres to promote the understanding of the electronic dynamics in more complex plasmonic nanostructures and the design of nanoscale light-controlled plasmonic electron sources for photoelectronic devices of applied interest.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"50 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0719","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the generation and control of fast photoelectrons (PEs) by exposing plasmonic nanoparticles (NPs) to short infrared (IR) laser pulses with peak intensities between 1012 and 3 × 1013 W/cm2. Our measured and numerically simulated PE momentum distributions demonstrate the extent to which PE yields and cutoff energies are controlled by the NP size, material, and laser peak intensity. For strong-field photoemission from spherical silver, gold, and platinum NPs with diameters between 10 and 100 nm our results confirm and surpass extremely high PEs cutoff energies, up to several hundred times the incident laser-pulse ponderomotive energy, found recently for gold nanospheres [Saydanzad et al., Nanophotonics 12, 1931 (2023)]. As reported previously for dielectric NPs [Rupp et al., J. Mod. Opt. 64, 995 (2017)], at higher intensities the cutoff energies we deduce from measured and simulated PE spectra tend to converge to a metal-independent limit. We expect these characteristics of light-induced electron emission from prototypical plasmonic metallic nanospheres to promote the understanding of the electronic dynamics in more complex plasmonic nanostructures and the design of nanoscale light-controlled plasmonic electron sources for photoelectronic devices of applied interest.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信