{"title":"Redox disruption using electroactive liposome coated gold nanoparticles for cancer therapy","authors":"Ying-Chi Chen, Li-Chan Chang, Yan-Ling Liu, Ming-Che Chang, Yin-Fen Liu, Po-Ya Chang, Divinah Manoharan, Wen-Jyun Wang, Jia-Sin Chen, Hsueh-Chun Wang, Wen-Tai Chiu, Wei-Peng Li, Hwo-Shuenn Sheu, Wen-Pin Su, Chen-Sheng Yeh","doi":"10.1038/s41467-025-58636-2","DOIUrl":null,"url":null,"abstract":"<p>Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing <i>Shewanella oneidensis</i> MR-1 membrane proteins, we develop liposomes enriched with <i>c</i>-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO<sub>2</sub> insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58636-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a global health challenge necessitating innovative therapies. We introduce a strategy to disrupt cancer cell redox balance using gold nanoparticles (Au NPs) as electron sinks combined with electroactive membranes. Utilizing Shewanella oneidensis MR-1 membrane proteins, we develop liposomes enriched with c-type cytochromes. These, coupled with Au NPs, facilitate autonomous electron transfer from cancer cells, disrupting redox processes and inducing cell death. Effective across various cancer types, larger Au NPs show enhanced efficacy, especially under hypoxic conditions. Oxidative stress from Au@MIL (MIL: membrane-integrated liposome) treatments, including mitochondrial and endoplasmic reticulum lipid oxidation and mitochondrial membrane potential changes, triggers apoptosis, bypassing iron-mediated pathways. Surface plasmon band and X-ray absorption near-edge structure (XANES) analyses confirm electron transfer. A SiO2 insulator coating on Au NPs blocks this transfer, suppressing cancer cell damage. This approach highlights the potential of modulated electron transfer pathways in targeted cancer therapy, offering refined and effective treatments.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.