Mariem Radhouani, Asma Farhat, Anna Hakobyan, Sophie Zahalka, Lisabeth Pimenov, Alina Fokina, Anastasiya Hladik, Karin Lakovits, Jessica Brösamlen, Vojtech Dvorak, Natalia Nunes, Andreas Zech, Marco Idzko, Thomas Krausgruber, Jörg Köhl, Ozge Uluckan, Jiri Kovarik, Kai Hoehlig, Axel Vater, Margret Eckhard, Andy Sombke, Nikolaus Fortelny, Jörg Menche, Sylvia Knapp, Philipp Starkl
{"title":"Eosinophil innate immune memory after bacterial skin infection promotes allergic lung inflammation","authors":"Mariem Radhouani, Asma Farhat, Anna Hakobyan, Sophie Zahalka, Lisabeth Pimenov, Alina Fokina, Anastasiya Hladik, Karin Lakovits, Jessica Brösamlen, Vojtech Dvorak, Natalia Nunes, Andreas Zech, Marco Idzko, Thomas Krausgruber, Jörg Köhl, Ozge Uluckan, Jiri Kovarik, Kai Hoehlig, Axel Vater, Margret Eckhard, Andy Sombke, Nikolaus Fortelny, Jörg Menche, Sylvia Knapp, Philipp Starkl","doi":"10.1126/sciimmunol.adp6231","DOIUrl":null,"url":null,"abstract":"<div >Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium <i>Staphylococcus aureus</i> persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 106","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.adp6231","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial exposure at barrier interfaces drives development and balance of the immune system, but the consequences of local infections for systemic immunity and secondary inflammation are unclear. Here, we show that skin exposure to the bacterium Staphylococcus aureus persistently shapes the immune system of mice with specific impact on progenitor and mature bone marrow neutrophil and eosinophil populations. The infection-imposed changes in eosinophils were long-lasting and associated with functional as well as imprinted epigenetic and metabolic changes. Bacterial exposure enhanced cutaneous allergic sensitization and resulted in exacerbated allergen-induced lung inflammation. Functional bone marrow eosinophil reprogramming and pulmonary allergen responses were driven by the alarmin interleukin-33 and the complement cleavage fragment C5a. Our study highlights the systemic impact of skin inflammation and reveals mechanisms of eosinophil innate immune memory and organ cross-talk that modulate systemic responses to allergens.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.