Optimal reactive operation of general topology supply chain and manufacturing networks under disruptions

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-04-04 DOI:10.1002/aic.18833
Daniel Ovalle, Joshua L. Pulsipher, Yixin Ye, Kyle Harshbarger, Scott Bury, Carl D. Laird, Ignacio E. Grossmann
{"title":"Optimal reactive operation of general topology supply chain and manufacturing networks under disruptions","authors":"Daniel Ovalle, Joshua L. Pulsipher, Yixin Ye, Kyle Harshbarger, Scott Bury, Carl D. Laird, Ignacio E. Grossmann","doi":"10.1002/aic.18833","DOIUrl":null,"url":null,"abstract":"Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to disruptions from unplanned events. Optimal responses should consider factors such as product allocation, delayed shipments, and price renegotiation, among other factors. In such context, we propose a multiperiod mixed‐integer linear programming model that integrates production, scheduling, shipping, and order management to minimize the financial impact of such disruptions. The model accommodates arbitrary supply chain topologies and incorporates various disruption scenarios, offering adaptability to real‐world complexities. A case study from the chemical industry demonstrates the scalability of the model under finer time discretization and explores the influence of disruption types and order management costs on optimal schedules. This approach provides a tractable, adaptable framework for developing responsive operational plans in supply chain and manufacturing networks under uncertainty.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18833","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Supply and manufacturing networks in the chemical industry involve diverse processing steps across different locations, rendering their operation vulnerable to disruptions from unplanned events. Optimal responses should consider factors such as product allocation, delayed shipments, and price renegotiation, among other factors. In such context, we propose a multiperiod mixed‐integer linear programming model that integrates production, scheduling, shipping, and order management to minimize the financial impact of such disruptions. The model accommodates arbitrary supply chain topologies and incorporates various disruption scenarios, offering adaptability to real‐world complexities. A case study from the chemical industry demonstrates the scalability of the model under finer time discretization and explores the influence of disruption types and order management costs on optimal schedules. This approach provides a tractable, adaptable framework for developing responsive operational plans in supply chain and manufacturing networks under uncertainty.
中断下一般拓扑供应链和制造网络的最优无功运行
化工行业的供应和制造网络涉及不同地点的不同处理步骤,使其操作容易受到计划外事件的干扰。最佳对策应考虑诸如产品分配、延迟发货和价格重新谈判等因素。在这种情况下,我们提出了一个多周期混合整数线性规划模型,该模型集成了生产、调度、运输和订单管理,以最大限度地减少此类中断的财务影响。该模型可适应任意供应链拓扑结构,并包含各种中断场景,提供对现实世界复杂性的适应性。化工行业的一个案例研究证明了该模型在更精细的时间离散化下的可扩展性,并探讨了中断类型和订单管理成本对最优调度的影响。该方法为在不确定的供应链和制造网络中制定响应性运营计划提供了一个易于处理、适应性强的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信