Multiple sclerosis: an immune attack on astrocyte-mediated ion and water homeostasis

IF 28.2 1区 医学 Q1 CLINICAL NEUROLOGY
Marjo S. van der Knaap, Rogier Min
{"title":"Multiple sclerosis: an immune attack on astrocyte-mediated ion and water homeostasis","authors":"Marjo S. van der Knaap, Rogier Min","doi":"10.1038/s41582-025-01081-y","DOIUrl":null,"url":null,"abstract":"<p>Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. The chain of events that results in demyelinating lesions is not understood, although most theories assume a primary immune attack on myelin. However, the glial cell adhesion molecule GlialCAM, which forms part of a protein complex in astrocytic endfeet that is crucial for brain ion and water homeostasis, was recently identified as a target for autoimmunity in patients with MS. This complex also includes the astrocytic transmembrane protein MLC1, the water channel aquaporin 4 (AQP4) and the potassium channel KIR4.1. Autoimmunity against AQP4 underlies another demyelinating disorder, neuromyelitis optica, and autoimmunity against KIR4.1 has been implicated in a subtype of MS. Genetic defects in any of these proteins cause leukodystrophies with disruption of brain ion and water homeostasis, which is regulated by astrocytes and secondarily affects myelin. In this Perspective, we argue that an immune attack on the ion and water homeostasis machinery in astrocytic endfeet, rather than directly on myelin, is the primary event in MS and that myelin damage is a consequence of astrocyte dysfunction. This hypothesis is supported by pathological studies on tissue from people with MS and has important implications for disease models and therapy targets.</p>","PeriodicalId":19085,"journal":{"name":"Nature Reviews Neurology","volume":"37 1","pages":""},"PeriodicalIF":28.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41582-025-01081-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. The chain of events that results in demyelinating lesions is not understood, although most theories assume a primary immune attack on myelin. However, the glial cell adhesion molecule GlialCAM, which forms part of a protein complex in astrocytic endfeet that is crucial for brain ion and water homeostasis, was recently identified as a target for autoimmunity in patients with MS. This complex also includes the astrocytic transmembrane protein MLC1, the water channel aquaporin 4 (AQP4) and the potassium channel KIR4.1. Autoimmunity against AQP4 underlies another demyelinating disorder, neuromyelitis optica, and autoimmunity against KIR4.1 has been implicated in a subtype of MS. Genetic defects in any of these proteins cause leukodystrophies with disruption of brain ion and water homeostasis, which is regulated by astrocytes and secondarily affects myelin. In this Perspective, we argue that an immune attack on the ion and water homeostasis machinery in astrocytic endfeet, rather than directly on myelin, is the primary event in MS and that myelin damage is a consequence of astrocyte dysfunction. This hypothesis is supported by pathological studies on tissue from people with MS and has important implications for disease models and therapy targets.

Abstract Image

多发性硬化症:星形胶质细胞介导的离子和水稳态的免疫攻击
多发性硬化症(MS)是一种中枢神经系统炎症性脱髓鞘疾病。导致脱髓鞘病变的一系列事件尚不清楚,尽管大多数理论认为是对髓磷脂的原发性免疫攻击。然而,胶质细胞粘附分子GlialCAM是星形细胞端足蛋白复合物的一部分,对脑离子和水稳态至关重要,最近被确定为ms患者自身免疫的靶标。该复合物还包括星形细胞跨膜蛋白MLC1、水通道水通道蛋白4 (AQP4)和钾通道KIR4.1。针对AQP4的自身免疫是另一种脱髓鞘疾病——视神经脊髓炎的基础,而针对KIR4.1的自身免疫与ms的一种亚型有关,这些蛋白中的任何一种的遗传缺陷都会导致白质营养不良,并破坏脑离子和水的稳态,这是由星形细胞调节的,继发影响髓磷脂。从这个角度来看,我们认为免疫攻击星形细胞终足中的离子和水稳态机制,而不是直接攻击髓磷脂,是MS的主要事件,髓磷脂损伤是星形细胞功能障碍的结果。这一假设得到了MS患者组织病理研究的支持,对疾病模型和治疗靶点具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Neurology
Nature Reviews Neurology 医学-临床神经学
CiteScore
29.90
自引率
0.80%
发文量
138
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Neurology aims to be the premier source of reviews and commentaries for the scientific and clinical communities we serve. We want to provide an unparalleled service to authors, referees, and readers, and we work hard to maximize the usefulness and impact of each article. The journal publishes Research Highlights, Comments, News & Views, Reviews, Consensus Statements, and Perspectives relevant to researchers and clinicians working in the field of neurology. Our broad scope ensures that the work we publish reaches the widest possible audience. Our articles are authoritative, accessible, and enhanced with clearly understandable figures, tables, and other display items. This page gives more detail about the aims and scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信