Cellular and molecular regulations of oocyte selection and activation in mammals.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Current Topics in Developmental Biology Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI:10.1016/bs.ctdb.2024.11.003
Xuebing Yang, Yan Zhang, Hua Zhang
{"title":"Cellular and molecular regulations of oocyte selection and activation in mammals.","authors":"Xuebing Yang, Yan Zhang, Hua Zhang","doi":"10.1016/bs.ctdb.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.</p>","PeriodicalId":55191,"journal":{"name":"Current Topics in Developmental Biology","volume":"162 ","pages":"283-315"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics in Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctdb.2024.11.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Oocytes, a uniquely pivotal cell population, play a central role in species continuity. In mammals, oogenesis involves distinct processes characterized by sequential rounds of selection, arrest, and activation to produce a limited number of mature eggs, fitting their high-survival yet high-cost fertility. During the embryonic phase, oocytes undergo intensive selection via cytoplasmic and organelle enrichment, accompanied by the onset and arrest of meiosis, thereby establishing primordial follicles (PFs) as a finite reproductive reserve. Subsequently, the majority of primary oocytes enter a dormant state and are gradually recruited through a process termed follicle activation, essential for maintaining orderly fertility. Following activation, oocytes undergo rapid growth, experiencing cycles of arrest and activation regulated by endocrine and paracrine signals, ultimately forming fertilizable eggs. Over the past two decades, advancements in genetically modified animal models, high-resolution imaging, and omics technologies have significantly enhanced our understanding of the cellular and molecular mechanisms that govern mammalian oogenesis. These advances offer profound insights into the regulatory mechanisms of mammalian reproduction and associated female infertility disorders. In this chapter, we provide an overview of current knowledge in mammalian oogenesis, with a particular emphasis on oocyte selection and activation in vivo.

哺乳动物卵母细胞选择和激活的细胞和分子调控。
卵母细胞是一种独特的关键细胞群,在物种连续性中起着核心作用。在哺乳动物中,卵子发生涉及不同的过程,其特征是连续的选择,捕获和激活,以产生有限数量的成熟卵子,以适应其高存活率但高成本的生育能力。在胚胎期,卵母细胞通过细胞质和细胞器的富集经历了密集的选择,伴随着减数分裂的开始和停止,从而建立了原始卵泡(PFs)作为有限的生殖储备。随后,大多数初级卵母细胞进入休眠状态,并通过称为卵泡激活的过程逐渐募集,这对于维持有序的生育至关重要。激活后,卵母细胞快速生长,在内分泌和旁分泌信号的调控下经历停滞和激活的周期,最终形成受精卵。在过去的二十年里,转基因动物模型、高分辨率成像和组学技术的进步极大地增强了我们对哺乳动物卵子发生的细胞和分子机制的理解。这些进展为哺乳动物生殖和相关女性不孕症的调节机制提供了深刻的见解。在本章中,我们概述了哺乳动物卵子发生的最新知识,特别强调了卵母细胞的选择和体内激活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信