{"title":"Availability of Juvenile Refuge Habitats Explains the Dynamics and Size Structure of Cannibalistic Fish Populations.","authors":"Wojciech Uszko, Tobias van Kooten, Pär Byström","doi":"10.1086/734103","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMany animals exhibit ontogenetic niche shifts as they grow, which strongly affects population dynamics. However, such niche shifts can be constrained by the physical environment that the population occupies. To study this, we develop a physiologically structured population model parameterized for brown trout and vary the availability of a stream used as an exclusive juvenile nursery habitat. We find fewer but large, fast-growing adults in lakes with small streams and more but smaller, slow-growing adults in lakes with large streams. We show that the mechanism behind this pattern is a reduced ability of cannibals to control juvenile survival in the lake with increasing stream availability. Juveniles emerging from the stream at larger sizes intensify competition with the lake-dwelling adults, leading to slower individual growth. These results are similar for other sources of size-dependent juvenile mortality in the lake. Field data from brown trout lakes across a stream size gradient show the same pattern: reduced trout growth and fewer large individuals in lakes with larger tributary streams. We show how ontogenetic niche shifts and stage-specific habitat availability affect population structure and dynamics through size-dependent mortality and competition. Our results provide an important foundation that may help design effective conservation and restoration strategies.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"205 4","pages":"371-387"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/734103","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractMany animals exhibit ontogenetic niche shifts as they grow, which strongly affects population dynamics. However, such niche shifts can be constrained by the physical environment that the population occupies. To study this, we develop a physiologically structured population model parameterized for brown trout and vary the availability of a stream used as an exclusive juvenile nursery habitat. We find fewer but large, fast-growing adults in lakes with small streams and more but smaller, slow-growing adults in lakes with large streams. We show that the mechanism behind this pattern is a reduced ability of cannibals to control juvenile survival in the lake with increasing stream availability. Juveniles emerging from the stream at larger sizes intensify competition with the lake-dwelling adults, leading to slower individual growth. These results are similar for other sources of size-dependent juvenile mortality in the lake. Field data from brown trout lakes across a stream size gradient show the same pattern: reduced trout growth and fewer large individuals in lakes with larger tributary streams. We show how ontogenetic niche shifts and stage-specific habitat availability affect population structure and dynamics through size-dependent mortality and competition. Our results provide an important foundation that may help design effective conservation and restoration strategies.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.