Seung Eun Baek, Kiyean Kim, Youn-Kyung Choi, Sung-Hun Kim, Seong-Sik Kim, Ki Beom Kim, Yong-Il Kim
{"title":"Effects of clear aligner edentulous space design on distal canine movement: An iterative finite element analysis in cases involving extraction.","authors":"Seung Eun Baek, Kiyean Kim, Youn-Kyung Choi, Sung-Hun Kim, Seong-Sik Kim, Ki Beom Kim, Yong-Il Kim","doi":"10.4041/kjod24.286","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.</p><p><strong>Methods: </strong>FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, half-pontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.</p><p><strong>Results: </strong>All the groups initially showed crown displacement, distal tipping, and distal rotation. Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.</p><p><strong>Conclusions: </strong>The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.</p>","PeriodicalId":51260,"journal":{"name":"Korean Journal of Orthodontics","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4041/kjod24.286","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Using finite element method (FEM) analysis of a clear aligner (CA), this study aimed to investigate the effects of varying the edentulous space on canine distal bodily movement during space closure following maxillary first premolar extraction.
Methods: FEM analysis was used to simulate distal canine bodily movement following maxillary first premolar extraction using CAs. Four CA designs for edentulous spaces were compared: no-pontic, full-pontic, half-pontic, and beam. Three-dimensional models of the tooth components and CA were created. The target was set at a 0.25-mm distal canine movement. Long-term tooth movement was simulated using an iterative calculation method.
Results: All the groups initially showed crown displacement, distal tipping, and distal rotation. Over time, the movement patterns differed in relation to the design. The no-pontic design exhibited the greatest displacement and tipping. The beam design exhibited the largest initial displacement but showed the lowest displacement and tipping thereafter. Full- and half-pontic designs yielded intermediate results. Significant force reduction was observed immediately after CA application, and was followed by a gradual decrease. The mean tooth-movement achievement rate was approximately 76.7%.
Conclusions: The edentulous space design of the CA substantially affected tooth-movement behavior. An iterative simulation is necessary to evaluate longterm tooth-movement patterns. The beam design demonstrated optimal suitability for bodily movement with minimal tipping. For optimal results, additional setup or overcorrection may be necessary.
期刊介绍:
The Korean Journal of Orthodontics (KJO) is an international, open access, peer reviewed journal published in January, March, May, July, September, and November each year. It was first launched in 1970 and, as the official scientific publication of Korean Association of Orthodontists, KJO aims to publish high quality clinical and scientific original research papers in all areas related to orthodontics and dentofacial orthopedics. Specifically, its interest focuses on evidence-based investigations of contemporary diagnostic procedures and treatment techniques, expanding to significant clinical reports of diverse treatment approaches.
The scope of KJO covers all areas of orthodontics and dentofacial orthopedics including successful diagnostic procedures and treatment planning, growth and development of the face and its clinical implications, appliance designs, biomechanics, TMJ disorders and adult treatment. Specifically, its latest interest focuses on skeletal anchorage devices, orthodontic appliance and biomaterials, 3 dimensional imaging techniques utilized for dentofacial diagnosis and treatment planning, and orthognathic surgery to correct skeletal disharmony in association of orthodontic treatment.