Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs.

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-02-25 eCollection Date: 2025-03-14 DOI:10.1016/j.patter.2025.101184
Chuanpeng Dong, Feifei Zhang, Emily He, Ping Ren, Nipun Verma, Xinxin Zhu, Di Feng, James Cai, Hongyu Zhao, Sidi Chen
{"title":"Sensitive detection of synthetic response to cancer immunotherapy driven by gene paralog pairs.","authors":"Chuanpeng Dong, Feifei Zhang, Emily He, Ping Ren, Nipun Verma, Xinxin Zhu, Di Feng, James Cai, Hongyu Zhao, Sidi Chen","doi":"10.1016/j.patter.2025.101184","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapies, including checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment; however, many patients remain unresponsive to these treatments or relapse following treatment. CRISPR screenings have been used to identify novel single gene targets that can enhance immunotherapy effectiveness, but the identification of combinational targets remains a challenge. Here, we introduce a computational approach that uses sgRNA set enrichment analysis to identify cancer-intrinsic paralog pairs for enhancing immunotherapy using genome-wide screens. We have further developed an ensemble learning model that uses an XGBoost classifier and incorporates features to predict paralog gene pairs that influence immunotherapy efficacy. We experimentally validated the functional significance of these predicted paralog pairs using CRISPR double knockout (DKO). These data and analyses collectively provide a sensitive approach to identifying previously undetected paralog gene pairs that can significantly affect cancer immunotherapy response, even when individual genes within the pair have limited effect.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 3","pages":"101184"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapies, including checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy, have revolutionized cancer treatment; however, many patients remain unresponsive to these treatments or relapse following treatment. CRISPR screenings have been used to identify novel single gene targets that can enhance immunotherapy effectiveness, but the identification of combinational targets remains a challenge. Here, we introduce a computational approach that uses sgRNA set enrichment analysis to identify cancer-intrinsic paralog pairs for enhancing immunotherapy using genome-wide screens. We have further developed an ensemble learning model that uses an XGBoost classifier and incorporates features to predict paralog gene pairs that influence immunotherapy efficacy. We experimentally validated the functional significance of these predicted paralog pairs using CRISPR double knockout (DKO). These data and analyses collectively provide a sensitive approach to identifying previously undetected paralog gene pairs that can significantly affect cancer immunotherapy response, even when individual genes within the pair have limited effect.

由基因平行对驱动的肿瘤免疫治疗合成反应的灵敏检测。
免疫疗法,包括检查点阻断和嵌合抗原受体T细胞(CAR-T)疗法,已经彻底改变了癌症治疗;然而,许多患者对这些治疗仍无反应或治疗后复发。CRISPR筛选已被用于鉴定新的单基因靶标,可以提高免疫治疗的有效性,但鉴定组合靶标仍然是一个挑战。在这里,我们介绍了一种计算方法,该方法使用sgRNA集富集分析来识别癌症固有的平行对,从而通过全基因组筛选来增强免疫治疗。我们进一步开发了一个集成学习模型,该模型使用XGBoost分类器并结合特征来预测影响免疫治疗疗效的副基因对。我们使用CRISPR双敲除(DKO)实验验证了这些预测的平行对的功能意义。这些数据和分析共同提供了一种敏感的方法来识别以前未检测到的可以显著影响癌症免疫治疗反应的副基因对,即使这对基因中的单个基因影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信