{"title":"GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals.","authors":"Joseph Paillard, Jörg F Hipp, Denis A Engemann","doi":"10.1016/j.patter.2025.101182","DOIUrl":null,"url":null,"abstract":"<p><p>Spectral analysis using wavelets is widely used for identifying biomarkers in EEG signals. Recently, Riemannian geometry has provided an effective mathematical framework for predicting biomedical outcomes from multichannel electroencephalography (EEG) recordings while showing concord with neuroscientific domain knowledge. However, these methods rely on handcrafted rules and sequential optimization. In contrast, deep learning (DL) offers end-to-end trainable models achieving state-of-the-art performance on various prediction tasks but lacks interpretability and interoperability with established neuroscience concepts. We introduce Gabor Riemann EEGNet (GREEN), a lightweight neural network that integrates wavelet transforms and Riemannian geometry for processing raw EEG data. Benchmarking on six prediction tasks across four datasets with over 5,000 participants, GREEN outperformed non-deep state-of-the-art models and performed favorably against large DL models while using orders-of-magnitude fewer parameters. Computational experiments showed that GREEN facilitates learning sparse representations without compromising performance. By integrating domain knowledge, GREEN combines a desirable complexity-performance trade-off with interpretable representations.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 3","pages":"101182"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963017/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spectral analysis using wavelets is widely used for identifying biomarkers in EEG signals. Recently, Riemannian geometry has provided an effective mathematical framework for predicting biomedical outcomes from multichannel electroencephalography (EEG) recordings while showing concord with neuroscientific domain knowledge. However, these methods rely on handcrafted rules and sequential optimization. In contrast, deep learning (DL) offers end-to-end trainable models achieving state-of-the-art performance on various prediction tasks but lacks interpretability and interoperability with established neuroscience concepts. We introduce Gabor Riemann EEGNet (GREEN), a lightweight neural network that integrates wavelet transforms and Riemannian geometry for processing raw EEG data. Benchmarking on six prediction tasks across four datasets with over 5,000 participants, GREEN outperformed non-deep state-of-the-art models and performed favorably against large DL models while using orders-of-magnitude fewer parameters. Computational experiments showed that GREEN facilitates learning sparse representations without compromising performance. By integrating domain knowledge, GREEN combines a desirable complexity-performance trade-off with interpretable representations.