Zhehua Zhang, Yun Zhang, Jianfeng Mao, Mansoor Khan, Kun Wang, Ling Jin, Shengqiao Xu, Zhiwu Yu
{"title":"Refined modeling and coupled vibration analysis of the sleeper lifting device in long span bridges under temperature and train dynamics.","authors":"Zhehua Zhang, Yun Zhang, Jianfeng Mao, Mansoor Khan, Kun Wang, Ling Jin, Shengqiao Xu, Zhiwu Yu","doi":"10.1038/s41598-025-95884-0","DOIUrl":null,"url":null,"abstract":"<p><p>The safety and smoothness of high-speed train operations, particularly through bridge zones, are crucial for ensuring operational stability and comfort. Regions such as large-span continuous and simply supported girder bridges, specifically the beam joint regions and beam ends, pose significant challenges due to the dynamic interaction between trains, tracks, and bridges. This study develops a refined coupled model of the train-track-sleeper lifting device-bridge (TTSB) system to simulate the dynamic responses of trains passing through large-displacement sleeper-lifting device (LSD) zones. The model incorporates the effect of axial displacement changes caused by temperature variations at the bridge girder ends, which influence the spacing of fasteners. The refined modeling approach improves both the accuracy and computational efficiency of dynamic simulations. The methodology employs a numerical model to simulate train dynamics at various speeds (250-425 km/h) and fastener spacing ranges (0.35-0.85 m). The study examines key parameters, including vertical and lateral displacements, accelerations, wheel load reduction rates, and derailment coefficients. The results show that increased fastener spacing leads to significant changes in vertical and lateral displacement and acceleration (up to 45.8% for Fastener A and 43.4% for Fastener B). Additionally, the wheel load reduction rate and derailment coefficient exhibit fluctuations with varying fastener spacing, highlighting safety implications. These findings validate the model's effectiveness and offer insights for optimizing track structure design in high-speed railways, improving safety and operational stability.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11526"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95884-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The safety and smoothness of high-speed train operations, particularly through bridge zones, are crucial for ensuring operational stability and comfort. Regions such as large-span continuous and simply supported girder bridges, specifically the beam joint regions and beam ends, pose significant challenges due to the dynamic interaction between trains, tracks, and bridges. This study develops a refined coupled model of the train-track-sleeper lifting device-bridge (TTSB) system to simulate the dynamic responses of trains passing through large-displacement sleeper-lifting device (LSD) zones. The model incorporates the effect of axial displacement changes caused by temperature variations at the bridge girder ends, which influence the spacing of fasteners. The refined modeling approach improves both the accuracy and computational efficiency of dynamic simulations. The methodology employs a numerical model to simulate train dynamics at various speeds (250-425 km/h) and fastener spacing ranges (0.35-0.85 m). The study examines key parameters, including vertical and lateral displacements, accelerations, wheel load reduction rates, and derailment coefficients. The results show that increased fastener spacing leads to significant changes in vertical and lateral displacement and acceleration (up to 45.8% for Fastener A and 43.4% for Fastener B). Additionally, the wheel load reduction rate and derailment coefficient exhibit fluctuations with varying fastener spacing, highlighting safety implications. These findings validate the model's effectiveness and offer insights for optimizing track structure design in high-speed railways, improving safety and operational stability.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.