{"title":"Root idioblasts reveal a specialized underground site for the storage of putative alkaloids in Rutaceae.","authors":"José Fernando Richit, Sofia Aumond Kuhn","doi":"10.1007/s00709-025-02063-z","DOIUrl":null,"url":null,"abstract":"<p><p>Rutaceae plants are a rich source of alkaloids, but their cell-specific localization remains relatively unknown in the underground tissues, except for the acridone-containing idioblasts in Ruta graveolens roots. To fill this gap, we used broad taxonomic sampling to investigate both the microchemistry and the root structure of Rutaceae species. Utilizing both transmitted light and epifluorescence microscopy, we examined seven distinct Rutaceae species to determine if root idioblasts were present. For the microchemical analysis of the idioblasts contents, we employed Nile red staining and Dragendorff's test. All analyzed species presented root idioblasts with contents that are reactive with Dragendorff's reagent and Nile red, suggesting the presence of putative alkaloids and lipophilic environments, respectively. These idioblasts are typically found in the radicular cortex and can be easily observed under UV light due to their autofluorescent contents. We found that the occurrence of root idioblasts is a widely distributed condition in Rutaceae, showing for the first time both structural and microchemical analyses for broad taxonomic sampling. These cell types could play an important role in alkaloid metabolism in the underground tissues of plants in this family and offer an exciting opportunity for future investigations.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02063-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rutaceae plants are a rich source of alkaloids, but their cell-specific localization remains relatively unknown in the underground tissues, except for the acridone-containing idioblasts in Ruta graveolens roots. To fill this gap, we used broad taxonomic sampling to investigate both the microchemistry and the root structure of Rutaceae species. Utilizing both transmitted light and epifluorescence microscopy, we examined seven distinct Rutaceae species to determine if root idioblasts were present. For the microchemical analysis of the idioblasts contents, we employed Nile red staining and Dragendorff's test. All analyzed species presented root idioblasts with contents that are reactive with Dragendorff's reagent and Nile red, suggesting the presence of putative alkaloids and lipophilic environments, respectively. These idioblasts are typically found in the radicular cortex and can be easily observed under UV light due to their autofluorescent contents. We found that the occurrence of root idioblasts is a widely distributed condition in Rutaceae, showing for the first time both structural and microchemical analyses for broad taxonomic sampling. These cell types could play an important role in alkaloid metabolism in the underground tissues of plants in this family and offer an exciting opportunity for future investigations.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".