{"title":"Quantitative nectar spur length governs nonrandom mating in a bee-pollinated <i>Aquilegia</i> species.","authors":"Mingliu Yang, Zhi-Qiang Zhang","doi":"10.1016/j.pld.2025.01.005","DOIUrl":null,"url":null,"abstract":"<p><p>Mating patterns in angiosperms are typically nonrandom, yet the mechanisms driving nonrandom mating remain unclear, especially regarding the effects of quantitative floral traits on plant mating success across male and female functions. In this study, we investigated how variation in spur length and flower number per plant influences mating patterns in <i>Aquilegia</i> <i>rockii</i> within a natural population. Using marker-based paternity analyses and manipulative experiments, we assessed the role of these traits in mating success across both sexual functions. We found significant variation in the mate composition between male and female function, with spur-length frequency positively associated with female outcrossing rate and mate number, but not with male outcrossing or mate number. Most mating events occurred within 10 m, and spur-length frequency positively correlated with mating distance. Regardless of selfing, there was evidence for assortative mating for spur length. Although spur length did not correlate with pollinator visitation, plants with mid-length spurs had higher seed set than those with shorter or longer spurs when autonomous selfing was excluded. Flowers number per plant was only associated with mating distance and female outcrossing rate. Our results suggest that spur length plays a key role in nonrandom mating by frequency-dependent mating, with implications for stabilizing selection and maintenance of genetic diversity. This study advances our understanding of floral diversity by dissecting the role of quantitative floral traits in plant mating through both female and male functions.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 2","pages":"323-336"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2025.01.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mating patterns in angiosperms are typically nonrandom, yet the mechanisms driving nonrandom mating remain unclear, especially regarding the effects of quantitative floral traits on plant mating success across male and female functions. In this study, we investigated how variation in spur length and flower number per plant influences mating patterns in Aquilegiarockii within a natural population. Using marker-based paternity analyses and manipulative experiments, we assessed the role of these traits in mating success across both sexual functions. We found significant variation in the mate composition between male and female function, with spur-length frequency positively associated with female outcrossing rate and mate number, but not with male outcrossing or mate number. Most mating events occurred within 10 m, and spur-length frequency positively correlated with mating distance. Regardless of selfing, there was evidence for assortative mating for spur length. Although spur length did not correlate with pollinator visitation, plants with mid-length spurs had higher seed set than those with shorter or longer spurs when autonomous selfing was excluded. Flowers number per plant was only associated with mating distance and female outcrossing rate. Our results suggest that spur length plays a key role in nonrandom mating by frequency-dependent mating, with implications for stabilizing selection and maintenance of genetic diversity. This study advances our understanding of floral diversity by dissecting the role of quantitative floral traits in plant mating through both female and male functions.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry