Multi-disciplinary evidence illuminates the speciation history of a monophyletic yet dimorphic lily group.

IF 4.6 1区 生物学 Q1 PLANT SCIENCES
Plant Diversity Pub Date : 2024-12-28 eCollection Date: 2025-03-01 DOI:10.1016/j.pld.2024.12.005
Yu Feng, Chaochao Yan, Wen-Qin Tu, Yu-Mei Yuan, Jing-Bo Wang, Xiao-Juan Chen, Chang-Qiu Liu, Yundong Gao
{"title":"Multi-disciplinary evidence illuminates the speciation history of a monophyletic yet dimorphic lily group.","authors":"Yu Feng, Chaochao Yan, Wen-Qin Tu, Yu-Mei Yuan, Jing-Bo Wang, Xiao-Juan Chen, Chang-Qiu Liu, Yundong Gao","doi":"10.1016/j.pld.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>Species boundaries are dynamic and constantly challenged by gene flow. Understanding the strategies different lineages adopt to maintain ecological and genetic distinctiveness requires employing an integrative species concept that incorporates data from a variety of sources. In this study, we incorporated genetic, ecological, and environmental evidence to assess the extent of speciation or evolutionary divergence within a monophyletic yet dimorphic group (i.e., clade Leucolirion consisting of six species) within the genus <i>Lilium</i>. This clade consists of two lineages that exhibit unexpectedly distinct perianth appearances: whitish trumpet (funnel form, encompassing four species) and orange recurved (reflex form, including two species), respectively, which are separated by completely different pollination syndromes. Transcriptome-based nuclear and plastome datasets indicate that these two lineages are isolated, with only weak ancient gene flow between them. Within each lineage, several taxa with incomplete isolation have diverged, as indicated by weak genetic structure, strong gene flow, and conflicts between nuclear and chloroplast phylogenies, especially in the trumpet lineage. Although these taxa are not entirely independent, our evidence indicates that they are diverging, with recent gene flow disappearing and multiple isolation strategies emerging, such as differences in flowering time and niche specialization. Taken together, our findings suggest that species divergence and maintenance in <i>Lilium</i> are driven by a combination of adaptive and non-adaptive processes, highlighting the complex interplay of historical climate changes, ecological adaptation, and gene flow in shaping biodiversity within this genus.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 2","pages":"189-200"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.12.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Species boundaries are dynamic and constantly challenged by gene flow. Understanding the strategies different lineages adopt to maintain ecological and genetic distinctiveness requires employing an integrative species concept that incorporates data from a variety of sources. In this study, we incorporated genetic, ecological, and environmental evidence to assess the extent of speciation or evolutionary divergence within a monophyletic yet dimorphic group (i.e., clade Leucolirion consisting of six species) within the genus Lilium. This clade consists of two lineages that exhibit unexpectedly distinct perianth appearances: whitish trumpet (funnel form, encompassing four species) and orange recurved (reflex form, including two species), respectively, which are separated by completely different pollination syndromes. Transcriptome-based nuclear and plastome datasets indicate that these two lineages are isolated, with only weak ancient gene flow between them. Within each lineage, several taxa with incomplete isolation have diverged, as indicated by weak genetic structure, strong gene flow, and conflicts between nuclear and chloroplast phylogenies, especially in the trumpet lineage. Although these taxa are not entirely independent, our evidence indicates that they are diverging, with recent gene flow disappearing and multiple isolation strategies emerging, such as differences in flowering time and niche specialization. Taken together, our findings suggest that species divergence and maintenance in Lilium are driven by a combination of adaptive and non-adaptive processes, highlighting the complex interplay of historical climate changes, ecological adaptation, and gene flow in shaping biodiversity within this genus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信