{"title":"Elevational variation in anatomical traits of the first-order roots and their adaptation mechanisms.","authors":"Xue Wang, Xinrui Liu, Shuang Chen, Jiang Zhu, Yanqi Yuan, Rong Zhu, Kaixi Chen, Xue Yang, Xiaochun Wang, Weiyi Mo, Ruili Wang, Shuoxin Zhang","doi":"10.1016/j.pld.2024.09.008","DOIUrl":null,"url":null,"abstract":"<p><p>Root anatomical traits play an important role in understanding the link between root physiological function and ecological process. To determine how plants change root anatomical traits to adapt to distinct environments, we measured four key root anatomical traits-stele diameter (SD), cortex thickness (CT), root diameter (RD), and the stele to root diameter ratio (SDRD)-of first-order roots of 82 species collected from different vegetation zones along a 2000 m altitudinal gradient on the northern slope of Taibai Mountain. Compared with other altitudes, plants located in temperate birch and fir forests had thinner SD, CT, RD, and SDRD. We found that elevational variation in root anatomical traits could largely be explained by phylogenetic taxonomy (clade). In addition, changes in SD were driven by soil bulk density, whereas variations in CT and RD were influenced by soil available nitrogen. When phylogenetic factors were removed from our analysis, allometric relationships between RD and root anatomical traits (SD and CT) were observed across different altitudes. Our study reveals the influence of phylogeny and environment on the elevational variation in root anatomical traits and further supports the allometric relationship between root anatomical traits (SD and CT) and RD. These findings enhance our understanding of the evolutionary and adaptive mechanisms of root anatomical structures, providing a basis for predicting how root anatomical traits respond to global changes.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 2","pages":"291-299"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.09.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Root anatomical traits play an important role in understanding the link between root physiological function and ecological process. To determine how plants change root anatomical traits to adapt to distinct environments, we measured four key root anatomical traits-stele diameter (SD), cortex thickness (CT), root diameter (RD), and the stele to root diameter ratio (SDRD)-of first-order roots of 82 species collected from different vegetation zones along a 2000 m altitudinal gradient on the northern slope of Taibai Mountain. Compared with other altitudes, plants located in temperate birch and fir forests had thinner SD, CT, RD, and SDRD. We found that elevational variation in root anatomical traits could largely be explained by phylogenetic taxonomy (clade). In addition, changes in SD were driven by soil bulk density, whereas variations in CT and RD were influenced by soil available nitrogen. When phylogenetic factors were removed from our analysis, allometric relationships between RD and root anatomical traits (SD and CT) were observed across different altitudes. Our study reveals the influence of phylogeny and environment on the elevational variation in root anatomical traits and further supports the allometric relationship between root anatomical traits (SD and CT) and RD. These findings enhance our understanding of the evolutionary and adaptive mechanisms of root anatomical structures, providing a basis for predicting how root anatomical traits respond to global changes.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry