Black Seed Oil Boosts Antidiabetic Activity of Glibenclamide: Development of Solidified Self Nanoemulsifying Drug Delivery System and Evaluation in Streptozotocin-Induced Diabetic Rat Model.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Abdelrahman Y Sherif, Doaa Hasan Alshora, Ahlam Alhusaini, Mohamed Abbas Ibrahim, Abdullah Ahmed Alghannam
{"title":"Black Seed Oil Boosts Antidiabetic Activity of Glibenclamide: Development of Solidified Self Nanoemulsifying Drug Delivery System and Evaluation in Streptozotocin-Induced Diabetic Rat Model.","authors":"Abdelrahman Y Sherif, Doaa Hasan Alshora, Ahlam Alhusaini, Mohamed Abbas Ibrahim, Abdullah Ahmed Alghannam","doi":"10.1080/10837450.2025.2489004","DOIUrl":null,"url":null,"abstract":"<p><p>Self nano-emulsifying drug delivery system (SNEDDS) has been widely used to enhance dissolution and bioavailability of glibenclamide (GB). In addition, black seed oil, containing bioactive thymoquinone (TQ), showed promising antihyperglycemic effect. Therefore, this work aims to design solid SNEDDS formulation composed of Black seed oil loaded with GB to enhance its antihyperglycemic activity. Different SNEDDS formulations were prepared and characterized for miscibility, dispersibility, droplet size, zeta potential, and in-vitro dissolution. Moreover, antidiabetic activity of prepared formulation against pure drug was evaluated using streptozotocin-induced diabetic rat model. The selected liquid SNEDDS (F7) formulation consisted of Kolliphor EL: Caproyl 90: BSO that produced nanoemulsion particles (24.9 ± 0.2nm). Different solidified formulations were prepared from F7, and the solidified (S4) formulation was selected as optimum formulation that showed GB and TQ had a DE% value of 73.16 ± 0.59 and 70.9%, respectively. Overall, both pure GB and GB-SNEDDS formulations significantly reduced blood glucose levels compared to the control diabetic group. The GB-SNEDDS showing superior efficacy (67% reduction, p = 5.5 × 10<sup>-5</sup>) compared to pure GB (52% reduction, p = 1.5 × 10<sup>-4</sup>). Moreover, the GB-SNEDD formulation has a significant (p = 0.0363) reducing action on blood glucose levels compared with the pure GB group. Present results showed that the prepared formulation boosted the antidiabetic activity of oral hypoglycemic drugs. This could open new avenues for using black seed oil as a natural bioactive hypoglycemic agent while preparing the SNEDDS formulation.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2489004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Self nano-emulsifying drug delivery system (SNEDDS) has been widely used to enhance dissolution and bioavailability of glibenclamide (GB). In addition, black seed oil, containing bioactive thymoquinone (TQ), showed promising antihyperglycemic effect. Therefore, this work aims to design solid SNEDDS formulation composed of Black seed oil loaded with GB to enhance its antihyperglycemic activity. Different SNEDDS formulations were prepared and characterized for miscibility, dispersibility, droplet size, zeta potential, and in-vitro dissolution. Moreover, antidiabetic activity of prepared formulation against pure drug was evaluated using streptozotocin-induced diabetic rat model. The selected liquid SNEDDS (F7) formulation consisted of Kolliphor EL: Caproyl 90: BSO that produced nanoemulsion particles (24.9 ± 0.2nm). Different solidified formulations were prepared from F7, and the solidified (S4) formulation was selected as optimum formulation that showed GB and TQ had a DE% value of 73.16 ± 0.59 and 70.9%, respectively. Overall, both pure GB and GB-SNEDDS formulations significantly reduced blood glucose levels compared to the control diabetic group. The GB-SNEDDS showing superior efficacy (67% reduction, p = 5.5 × 10-5) compared to pure GB (52% reduction, p = 1.5 × 10-4). Moreover, the GB-SNEDD formulation has a significant (p = 0.0363) reducing action on blood glucose levels compared with the pure GB group. Present results showed that the prepared formulation boosted the antidiabetic activity of oral hypoglycemic drugs. This could open new avenues for using black seed oil as a natural bioactive hypoglycemic agent while preparing the SNEDDS formulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信