Optimized identification and characterization of small RNAs with PANDORA-seq.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Junchao Shi, Yunfang Zhang, Yun Li, Liwen Zhang, Xudong Zhang, Menghong Yan, Qi Chen, Ying Zhang
{"title":"Optimized identification and characterization of small RNAs with PANDORA-seq.","authors":"Junchao Shi, Yunfang Zhang, Yun Li, Liwen Zhang, Xudong Zhang, Menghong Yan, Qi Chen, Ying Zhang","doi":"10.1038/s41596-025-01158-4","DOIUrl":null,"url":null,"abstract":"<p><p>Small noncoding RNAs (sncRNAs) are a diverse group of RNAs including small interfering RNAs, microRNAs, PIWI-interacting RNAs and RNAs derived from structured RNAs such as transfer RNAs, ribosomal RNAs and others. These sncRNAs have varied termini and RNA modifications, which can interfere with adaptor ligation and reverse transcription during cDNA library construction, hindering detection of many types of sncRNA by standard small RNA sequencing methods. To address this limitation, PANDORA sequencing introduces a refined methodology. The procedure includes sequential enzymatic treatments of size-selected RNAs with T4PNK and AlkB, which effectively circumvent the challenges presented by the ligation-blocking termini and reverse transcription-blocking RNA modifications, followed by tailored small RNA library construction protocols and deep sequencing. The obtained datasets are analyzed with the SPORTS pipeline, which can comprehensively analyze various types of sncRNA beyond the traditionally studied classes, to include those derived from various parental RNAs (for example, from transfer RNA and ribosomal RNA), as well as output the locations on the parental RNA from which these sncRNAs are derived. The entire protocol takes ~7 d, depending on the sample size and sequencing turnaround time. PANDORA sequencing provides a transformative tool to further our understanding of the expanding small RNA universe and to explore the uncharted functions of sncRNAs.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01158-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Small noncoding RNAs (sncRNAs) are a diverse group of RNAs including small interfering RNAs, microRNAs, PIWI-interacting RNAs and RNAs derived from structured RNAs such as transfer RNAs, ribosomal RNAs and others. These sncRNAs have varied termini and RNA modifications, which can interfere with adaptor ligation and reverse transcription during cDNA library construction, hindering detection of many types of sncRNA by standard small RNA sequencing methods. To address this limitation, PANDORA sequencing introduces a refined methodology. The procedure includes sequential enzymatic treatments of size-selected RNAs with T4PNK and AlkB, which effectively circumvent the challenges presented by the ligation-blocking termini and reverse transcription-blocking RNA modifications, followed by tailored small RNA library construction protocols and deep sequencing. The obtained datasets are analyzed with the SPORTS pipeline, which can comprehensively analyze various types of sncRNA beyond the traditionally studied classes, to include those derived from various parental RNAs (for example, from transfer RNA and ribosomal RNA), as well as output the locations on the parental RNA from which these sncRNAs are derived. The entire protocol takes ~7 d, depending on the sample size and sequencing turnaround time. PANDORA sequencing provides a transformative tool to further our understanding of the expanding small RNA universe and to explore the uncharted functions of sncRNAs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信