A three-stage machine learning and inference approach for educational data.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ting Da
{"title":"A three-stage machine learning and inference approach for educational data.","authors":"Ting Da","doi":"10.1038/s41598-025-89394-2","DOIUrl":null,"url":null,"abstract":"<p><p>A central task in educational studies is to uncover factors that drive a student's academic performance. While existing studies have utilized meticulous regression designs, it is challenging to select appropriate controls. Machine learning, however, offers a solution whereby the entire variable set can be inspected and filtered by different optimization schemes. In that light, this paper adopts a three-stage framework to analyze and discover potentially latent causal relationships from an open dataset from UCI. In the first stage, machine learning methods are employed to select candidate variables that are closely associated with student grades, and then a \"post-double-selection\" process is implemented to select the set of control variables. In the final stage, three case studies are conducted to illustrate the effectiveness of the three-stage design. The model pipeline is suitable for situations where there is only minimal prior knowledge available to address a potentially causal research question.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11521"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-89394-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A central task in educational studies is to uncover factors that drive a student's academic performance. While existing studies have utilized meticulous regression designs, it is challenging to select appropriate controls. Machine learning, however, offers a solution whereby the entire variable set can be inspected and filtered by different optimization schemes. In that light, this paper adopts a three-stage framework to analyze and discover potentially latent causal relationships from an open dataset from UCI. In the first stage, machine learning methods are employed to select candidate variables that are closely associated with student grades, and then a "post-double-selection" process is implemented to select the set of control variables. In the final stage, three case studies are conducted to illustrate the effectiveness of the three-stage design. The model pipeline is suitable for situations where there is only minimal prior knowledge available to address a potentially causal research question.

针对教育数据的三阶段机器学习和推理方法。
教育研究的一项核心任务是发现影响学生学业成绩的因素。虽然现有的研究都采用了细致的回归设计,但要选择适当的控制方法却很有挑战性。然而,机器学习提供了一种解决方案,可以通过不同的优化方案对整个变量集进行检查和筛选。有鉴于此,本文采用了一个三阶段框架来分析和发现 UCI 开放数据集中潜在的因果关系。在第一阶段,采用机器学习方法选择与学生成绩密切相关的候选变量,然后采用 "后双选 "流程选择控制变量集。在最后阶段,进行了三个案例研究,以说明三阶段设计的有效性。该模型管道适用于只有极少量先验知识的情况,以解决潜在的因果关系研究问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信