Multifunctional cosmetic potential of extracellular vesicle‑like nanoparticles derived from the stem of Cannabis sativa in treating pigmentation disorders.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-06-01 Epub Date: 2025-04-04 DOI:10.3892/mmr.2025.13512
Hyeon Jin Lee, Yun Hye Kim, Seo Jun Lee, Su Hyun Park, Jae-Min Yuk, Jae Cheol Jeong, Young Bae Ryu, Woo Sik Kim
{"title":"Multifunctional cosmetic potential of extracellular vesicle‑like nanoparticles derived from the stem of <i>Cannabis sativa</i> in treating pigmentation disorders.","authors":"Hyeon Jin Lee, Yun Hye Kim, Seo Jun Lee, Su Hyun Park, Jae-Min Yuk, Jae Cheol Jeong, Young Bae Ryu, Woo Sik Kim","doi":"10.3892/mmr.2025.13512","DOIUrl":null,"url":null,"abstract":"<p><p>While natural products and synthetic chemicals are used in functional cosmetics, their potential side effects remain a concern. This has driven the need for safer and more effective agents to treat skin disorders. This has driven the need safer and more effective agents to treat skin disorders. Therefore, the present study aimed to explore the functional properties of Cannabis sativa stem‑derived nanoparticles (CSS‑NPs) and evaluate their potential as a cosmetic ingredient. Using nanoparticle analysis, CSS‑NPs, with a mean diameter of ~120 nm exhibited notable resistance to external stress conditions, including pH fluctuation and enzymatic degradation by DNase, RNase and proteinase K. They also contained 48 distinct biochemical components. <i>In vitro</i> assays revealed that CSS‑NPs significantly downregulated the expression of genes and proteins associated with melanin synthesis in mouse B16F10 melanoma cells under α‑melanocyte stimulating hormone (α‑MSH)‑induced hyperpigmentation. These inhibitory effects were mediated by the activation of ERK and Akt signaling pathways. Furthermore, CSS‑NPs improved the viability of α‑MSH‑treated B16F10 cells; this was accompanied by the upregulation of antioxidant‑associated enzymes and a decrease in α‑MSH‑induced reactive oxygen species levels. Collectively, these findings suggested that CSS‑NPs carry out a key role in mitigating skin pigmentation and enhancing antioxidant defenses by modulating the ERK/Akt axis during excessive melanin synthesis. Thus, CSS‑NPs represent a promising multifunctional cosmetic ingredient with potential in treating pigmentation disorders and protecting skin cells.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13512","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

While natural products and synthetic chemicals are used in functional cosmetics, their potential side effects remain a concern. This has driven the need for safer and more effective agents to treat skin disorders. This has driven the need safer and more effective agents to treat skin disorders. Therefore, the present study aimed to explore the functional properties of Cannabis sativa stem‑derived nanoparticles (CSS‑NPs) and evaluate their potential as a cosmetic ingredient. Using nanoparticle analysis, CSS‑NPs, with a mean diameter of ~120 nm exhibited notable resistance to external stress conditions, including pH fluctuation and enzymatic degradation by DNase, RNase and proteinase K. They also contained 48 distinct biochemical components. In vitro assays revealed that CSS‑NPs significantly downregulated the expression of genes and proteins associated with melanin synthesis in mouse B16F10 melanoma cells under α‑melanocyte stimulating hormone (α‑MSH)‑induced hyperpigmentation. These inhibitory effects were mediated by the activation of ERK and Akt signaling pathways. Furthermore, CSS‑NPs improved the viability of α‑MSH‑treated B16F10 cells; this was accompanied by the upregulation of antioxidant‑associated enzymes and a decrease in α‑MSH‑induced reactive oxygen species levels. Collectively, these findings suggested that CSS‑NPs carry out a key role in mitigating skin pigmentation and enhancing antioxidant defenses by modulating the ERK/Akt axis during excessive melanin synthesis. Thus, CSS‑NPs represent a promising multifunctional cosmetic ingredient with potential in treating pigmentation disorders and protecting skin cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信