Peng Bao, Chunhui Yao, Chenxi Tan, Alan Yilun Yuan, Minjia Chen, Seb J Savory, Richard Penty, Qixiang Cheng
{"title":"Ultra-low-crosstalk silicon switches driven thermally and electrically.","authors":"Peng Bao, Chunhui Yao, Chenxi Tan, Alan Yilun Yuan, Minjia Chen, Seb J Savory, Richard Penty, Qixiang Cheng","doi":"10.1038/s41378-025-00911-9","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to signal integrity. In this paper, we present two designs of silicon Mach-Zehnder Interferometer (MZI) switches achieving ultra-low-crosstalk, driven thermally and electrically. Each switch fabric is optimized at both the device and circuit level to suppress crosstalk and reduce system complexity. Notably, for the first time to the best of our knowledge, we harness the inherent self-heating effect in a carrier-injection-based MZI switch to create a pair of phase shifters that offers arbitrary phase differences. Such a pair of phase shifters induces matched insertion loss at each arm, thus minimizing crosstalk. Experimentally, an ultra-low crosstalk ratio below -40 dB is demonstrated for both thermo-optic (T-O) and electro-optic (E-O) switches. The T-O switch exhibits an on-chip loss of less than 5 dB with a switching time of 500 µs, whereas the E-O switch achieves an on-chip loss as low as 8.5 dB with a switching time of under 100 ns. In addition, data transmission of a 50 Gb/s on-off keying signal is demonstrated with high fidelity on the E-O switch, showing the great potential of the proposed switch designs.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"58"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968887/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00911-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon photonic switches are widely considered as a cost-effective solution for addressing the ever-growing data traffic in datacenter networks, as they offer unique advantages such as low power consumption, low latency, small footprint and high bandwidth. Despite extensive research efforts, crosstalk in large-scale photonic circuits still poses a threat to signal integrity. In this paper, we present two designs of silicon Mach-Zehnder Interferometer (MZI) switches achieving ultra-low-crosstalk, driven thermally and electrically. Each switch fabric is optimized at both the device and circuit level to suppress crosstalk and reduce system complexity. Notably, for the first time to the best of our knowledge, we harness the inherent self-heating effect in a carrier-injection-based MZI switch to create a pair of phase shifters that offers arbitrary phase differences. Such a pair of phase shifters induces matched insertion loss at each arm, thus minimizing crosstalk. Experimentally, an ultra-low crosstalk ratio below -40 dB is demonstrated for both thermo-optic (T-O) and electro-optic (E-O) switches. The T-O switch exhibits an on-chip loss of less than 5 dB with a switching time of 500 µs, whereas the E-O switch achieves an on-chip loss as low as 8.5 dB with a switching time of under 100 ns. In addition, data transmission of a 50 Gb/s on-off keying signal is demonstrated with high fidelity on the E-O switch, showing the great potential of the proposed switch designs.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.