Surface-enhanced spectroscopy technology based on metamaterials.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Dongxiao Li, Xueyuan Wu, Ziwei Chen, Tao Liu, Xiaojing Mu
{"title":"Surface-enhanced spectroscopy technology based on metamaterials.","authors":"Dongxiao Li, Xueyuan Wu, Ziwei Chen, Tao Liu, Xiaojing Mu","doi":"10.1038/s41378-025-00905-7","DOIUrl":null,"url":null,"abstract":"<p><p>Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"60"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00905-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.

基于超材料的表面增强光谱技术。
基于超材料的表面增强光谱技术近年来蓬勃发展,利用人为设计的亚波长结构可以有效地调节光波和电磁场,使其成为传感应用的宝贵平台。随着理论的不断完善,逐渐形成了几种有效的超材料通用模式,包括局域表面等离子体共振(LSPR)、Mie共振、连续体束缚态(BIC)和范诺共振。本文首先概述了这些核心共振机制,然后全面概述了六种主要的电磁波谱表面增强光谱技术:表面增强荧光(SEF)、表面增强拉曼散射(SERS)、表面增强红外吸收(SEIRA)、太赫兹(THz)传感、折射率(RI)传感和手性传感。这些技术涵盖了广泛的光谱范围,并解决了各种光学特性,使分子指纹、结构手性和折射率变化的检测成为可能。综述了不同增强光谱的综合利用、与其他先进技术的结合以及微型化超材料系统的研究现状。最后,我们评估了当前的挑战和未来的方向。展望未来,我们预计基于超材料的表面增强光谱将在科学、环境和生物医学领域的实时、现场检测中发挥变革性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信